[image: image4.wmf]

Core Financials

ABAP Programming Standards and Gudelines

Core Financial

ABAP Programming Standards and Guidelines
[image: image5.wmf]
Author:
Bob Johnson

Creation Date:
03/29/2001 12:00 PM

Last Updated:
06/14/2001 9:01 AM
Version:
1.0

This document is the final version of the ABAP Programming Standards and Guidelines that will be utilized by application developers. It has been signed off by NASA and will also be delivered as part of the Application Development Team’s final deliverable. Following this document is the superseded version that was developed by the Technical Architecture Team and signed off by the NASA.
Sign Off

	Date
	Name
	Signature

	
	
	

	
	
	

Change Log

	Date
	Version
	Author
	Change Description

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Reviewed By

	Date
	Name

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Table of Contents

3Table of Contents

1
Overview
8
2
General Standards
8
3
ABAP Program Elements
9
3.1
Attributes
9
3.1.1
Title
9
3.1.2
Type
9
3.1.3
Status
9
3.1.4
Application
10
3.1.5
Authorization Group
10
3.1.6
Development Class
10
3.1.7
Logical Database
10
3.1.8
Screen
10
3.1.9
Editor Lock
10
3.1.10
Fixed Point Arithmetic
10
3.1.11
Start via Variant
11
3.2
Source Code
11
3.2.1
General Programming Requirements
11
3.2.1.1
Authorization Checking
11
3.2.2
Executable Programs: (Template Y_EXECUTABLE_PROGRAM)
11
3.2.3
INCLUDE Programs:
13
3.2.4
Module Pool Programs:
14
3.2.5
Function Pool (Group) Programs:
15
3.2.6
Function Module Programs:
15
3.2.7
Subroutine Pool Programs:
16
3.2.8
Class Pool Programs:
17
3.2.9
Interface Pool Programs:
17
3.3
Documentation
17
3.3.1
Program Documentation:
17
3.3.1.1
Class Pool Documentation
18
3.3.1.2
Interface Pool Documentation
18
3.3.2
Changes and Enhancements:
19
3.3.3
User Documentation:
19
3.4
Text Elements
19
3.4.1
Titles and Headings
19
3.4.2
Selection Texts
20
3.4.3
Text-Symbols
20
3.5
Variants
20
4
Style Guidelines
21
4.1
ABAP Style Guidelines
21
4.1.1
R/3 Design Elements
21
4.1.2
Work Area Design Elements
22
4.2
NASA Style Guidelines
22
4.2.1
Window Titles
22
4.2.2
Selection Screens
22
4.2.3
Transaction Screens
22
4.2.4
Online Help
23
4.2.5
Report Titles
23
4.2.6
Report Headings and List Format
23
4.2.7
Report Footings
23
5
ABAP Programming Advanced Techniques
23
5.1
Message Classes
23
5.2
Views
23
5.3
Internal Tables:
24
5.4
Possible Uses Of Internal Tables
24
5.4.1
A Large Number Of Database Accesses Are Foreseen
24
5.4.2
Replacing Nested Selects
24
5.5
Performance Concerns: Internal looping vs. Nested selects
24
5.5.1
The tradeoff
25
5.5.2
Methods Of Internal Table Population
25
5.6
Free System Resources
26
5.7
Field Groups
26
5.7.1
INSERT f1 f2 ... INTO fg.
26
5.7.2
Extract <fg>.
27
5.7.3
Field Group Processing
27
5.7.4
Sample of Field Group usage in a program:
27
5.8
General Use Function Modules
28
5.8.1
Date Oriented Function Modules:
28
5.9
Logical Database:
29
5.10
Use of Indices:
29
6
Customer Enhancements – Enhancement Projects
29
7
Changing SAP Code
30
8
APPENDIX A: Programming Guidelines
31
8.1
Writing Maintainable Code
31
8.1.1
Program Structure
31
8.1.2
Modularization
32
8.1.3
Statement Format
32
8.1.4
Pre-defined Coding Blocks
32
8.1.5
Performance Considerations
34
8.1.6
Version Management
34
8.1.7
DEFINING DATA FIELDS AND TABLES
34
8.1.8
Field symbols
35
8.1.9
Example Program
36
8.2
Using Tables and Fields
37
8.2.1
Check Return Codes.
37
8.2.2
Initializing Fields and Structures
37
8.2.3
MOVE-CORRESPONDING
38
8.2.4
SORT
38
8.3
Working with Logical Operators and Control Structures
38
8.4
Performance and Tuning Guidelines
40
8.4.1
Use SORT to organize reports and data.
40
8.4.2
Defining Custom Tables.
41
8.4.3
Use of SELECT with Transparent and Pool tables.
41
8.4.4
Use of the SELECT statement with Cluster tables.
42
8.4.5
Matching field attributes in the SELECT WHERE clause
43
8.4.6
Processing Internal Tables and Data Areas.
44
8.4.7
Processing large tables.
47
8.4.8
General Tips:
47
8.5
SECONDARY INDEXES
48
8.5.1
Always ensure your index is being used:
48
8.5.2
General Rules for creating and using secondary indexes:
48
8.5.3
When to Create an Index
49
8.5.4
When Not to Create an Index:
50
8.6
Controlling the Development Environment
50
8.6.1
Quality Assurance
50
8.6.2
CROSS-REFERENCING A PROGRAM
50
8.7
Developer’s Issues for the Transport System
52
8.8
Transport Checklist for Developer
52
9
Appendix B: Metrics-Driven Code Comparisons
55
9.1
SQL Interface
55
9.1.1
Select … Where vs. Select + Check
55
9.1.2
Select single vs. Select-Endselect
55
9.1.3
Select aggregates
56
9.1.4
Select with view
56
9.1.5
Select with buffer support
56
9.1.6
Column Update
57
9.1.7
Select with index support
57
9.1.8
Select … Into Table t
57
9.1.9
Select-Endselect vs. Array-Select
58
9.1.10
Select with select list
58
9.1.11
Array Insert vs. Single-row Insert
58
9.2
String Manipulation
58
9.2.1
Special operators in IF (CA, …)
58
9.2.2
String concatenation II
59
9.2.3
Deleting leading spaces
59
9.2.4
String concatenation
60
9.2.5
String split
60
9.2.6
String length
61
9.3
Internal Tables
61
9.3.1
Building sorted tables
61
9.3.2
Building tables without duplicates
61
9.3.3
Different forms of key access
62
9.3.4
Key access to multiple lines
62
9.3.5
Copying internal tables
63
9.3.6
Sorting internal tables
63
9.3.7
Nested loops
63
9.3.8
Deleting a sequence of lines
64
9.3.9
Building condensed tables
64
9.3.10
Linear vs. Binary search
65
9.3.11
Secondary indices
65
9.3.12
Using explicit work areas
66
9.3.13
Comparing internal tables
66
9.3.14
Joining internal tables
67
9.3.15
Deleting duplicates
67
9.3.16
Deleting a set of lines
68
9.4
Typing
68
9.4.1
Typed vs. Untyped parameters
68
9.4.2
Typed vs. Untyped field-symbols
69
9.5
If, Case, …
69
9.5.1
If vs. Case
69
9.5.2
Case vs. Perform I of …
70
9.5.3
While vs. Do
70
9.6
Field Conversion
70
9.6.1
Field Types I and P
70
9.6.2
Constants Type F
71
9.6.3
Mixed types
71
9.6.4
Literals Type C and Type I
71
9.6.5
Arithmetic
72
10
Appendix C: Tips and Tricks
72
10.1
Helpful Hints on Commands:
72
10.2
General Hints:
72
10.3
Programming Tips
73
11
Appendix D: Quality ABAP Programming
74
11.1
OVERVIEW
74
11.2
Technical Principle for Program Optimization
75
11.3
Database access:
75
11.3.1
Optimization of individual SQL statements
75
11.3.2
No unnecessary access
75
11.3.3
Use SAP buffers
75
11.3.4
No unnecessary sort operations on the database
75
11.3.5
Optimize matchcodes
75
11.3.6
Minimize DB lock times
75
11.3.7
Avoid deadlock situations
75
11.4
ABAP Programming
75
11.4.1
Processing internal tables
76
11.4.2
Modularization
76
11.4.3
Costly language elements
76
11.5
Analysis tools
76
11.5.1
SQL trace (ST05)
76
11.5.2
Transaction: SDBE
76
11.5.3
ABAP trace analysis: SE30
76
11.5.4
Get RUN TIME FIELD f
77
11.5.5
ABAP cross reference analysis: RSINCL00
77
11.6
Note I: Optimization of individual SQL statement
77
11.7
Note II: Performance & Load Balancing for Batch Input
78
11.7.1
Background of SAP BDC programs
78
11.7.2
Where are the bottlenecks ?
78
11.7.3
What can we do to get around the bottlenecks ?
78
11.8
Note III: ABAP Programming Tips
79
11.8.1
TIP: When one uses the MOVE statement,
79
11.8.2
TIP: Use the FREE <table> command
79
11.8.3
TIP: When defining DATA statements
80
11.8.4
TIP: When using the SORT statement,
80
11.8.5
TIP: When processing an internal table use the LOOP
80
11.8.6
TIP: When the LOOP...AT...WHERE
80
11.8.7
TIP: Use the BINARY SEARCH,
81
11.8.8
TIP: Use a BINARY SEARCH read and MODIFY
81
11.8.9
TIP: If one performs many INSERTs or DELETEs
81
11.8.10
TIP: Use the CASE statement instead of a nested IF.
81
11.8.11
TIP: Always place the mot likely condition first,
82
11.8.12
Comparison different modularization techniques.
82
11.8.12.1
Internal subroutine
82
11.8.12.2
External subroutines
82
11.8.12.3
Function modules
82
11.8.12.4
Dynpros
82
11.8.12.5
Dialog Modules
82
11.8.12.6
Transactions
83
11.8.12.7
Reports
83
11.8.12.8
List processing
83

Overview

The purpose of this document is to detail uniform program standards for NASA Core Financials implementation, and to provide guidelines and useful information for programmers in the SAP environment.

Programming standards are needed to ensure the readability and maintainability of custom development programs and to provide a consistent and meaningful interface for the user on screens and report output.

1 General Standards

There are several general considerations, which must be recognized in conjunction with these programming standards. The following can be regarded as the basic rules-of-thumb for the creation of ABAP’s at NASA.

1. Changes should not be made to standard SAP development objects unless they are endorsed by SAP or are deemed by client management to be a necessity.

If changes to standard SAP code are made, please refer to the “Changes to SAP Code” section.

2. Documentation for all custom developments, excluding temporary objects not for transport, will be maintained in the Lotus Notes MDM Custom Development and Product Test databases.

3. ?product name? will be used for change management and managing SAP Corrections and Transport through testing and approval cycles.

4. Before the creation of a new ABAP, existing programs will be reviewed to determine if they may be used as a template or potentially fill the reporting requirement. Also, a determination should be made regarding whether or not the report would be better served by use of the Data Warehouse.

5. All custom ABAP development objects will be named according to the NASA Core Financials Development Naming Standards. The naming standards can be found in the Lotus Notes MDM Document Repository under the category General Deliverables.

6. Online documentation will be utilized to describe program functionality to end users and functional leads. ABAPs will not be transported to the System Test and Production systems without supporting on-line documentation.

7. Proper usage of SAP online tools in addition to the ABAP Editor. These include Function Modules, Online Documentation, Message Classes, Screen Painter, Menu Painter, Logical Databases, etc.

8. Adherence to software ergonomics and design guidelines found in the SAP Style Guide and documented in ISO Dialogue Principals ISO9241-10.

9. Completion of all work unit deliverables supporting the program development.

ABAP Program Elements

ABAP programs consist of up to 5 elements or sub-objects. As seen in the ABAP Editor Initial Screen, these are:

· Source code

· Variants

· Attributes

· Documentation

· Text elements

Following is a discussion of each element, presented in the order they are usually required when creating a new ABAP program.

1.1 Attributes

Program attributes are one of the 5 sub-objects of an ABAP program where defining attributes of the program are set. You must maintain these before entering program code or any other sub-object.

1.1.1 Title

The title should be a short concise, meaningful description. It can be up to 70 characters long and appears in the header section of a report when it is executed.

Example:

Create BDC Session for Transaction MM01 - Create Material Master

1.1.2 Type

Specifies the type of program:

· Executable Program (1) can be started without a transaction, may be executed on-line or in the background.

· Include Program (I) contain program code which is not executable by itself. Rather it is included in other programs by the INCLUDE statement.

· Module Pools (M) contain processing steps for screen modules. They are executed via a Transaction or a menu function.

· Subroutines (S) contain common FORM routines that are called using an external PERFORM statement.

· Function Groups (F) contain Function Modules and are managed by the Function Builder. They cannot be assigned or changed in attributes screen.

· Interface Pools (J) contain interfaces and are part of the object oriented extensions to ABAP. They are managed by the Class Builder and cannot be assigned or changed in attributes screen.

· Class Pools (K) contains classes and class methods, and are part of the object oriented extensions to ABAP. They are managed by the Class Builder and cannot be assigned or changed in attributes screen.

1.1.3 Status

· SAP standard production program (P).

· Customer production program (K).

· System program (S).

· Test program (T). A temporary, non-transportable program.

1.1.4 Application

Optionally, you may associate the program with an Application Area. For custom development, SAP suggests choosing either the ‘Customer Head Office Programs‘ or the ‘Customer Branch Office Programs’ category.

1.1.5 Authorization Group

Used to restrict access to users without a matching authorization group in their profile. Checks are performed before report execution, and before access to utility functions, report attributes, and the ABAP editor.

NASA requires that all custom developed programs have an authorization group assignment that meets the NASA SAP Security and Authorization Guidelines.

1.1.6 Development Class

Development classes are used in the Transport system. They are used to group all objects that are related to the same development to ensure they are and transported together. Custom developed objects must be associated with a custom development class. Refer to ‘NASA Core Financials Development Naming Standards’.

1.1.7 Logical Database

Assigns the logical database to be evaluated by the report program. The workbench provides access to all logical database programs delivered by SAP.

1.1.8 Screen

For report programs that use a logical database. Here you can specify the screen version of the database program.

Selection screen versions are stored in the database include DCxyzSEL. The selection screen version defaults to the version specified in the database access program.

1.1.9 Editor Lock

To be set while a program is being created or modified. It allows only the user ID to set the flag to modify the program. This is to prevent alteration of a program while a programmer makes modifications to it.

As a standard, use the Workbench Organizer as a locking mechanism when changing objects. This will reduce the number of changes when a program is ready to be transported to the test or production environment.

1.1.10 Fixed Point Arithmetic

If flagged, all calculations in the program are done using fixed point arithmetic. All programs that contain calculations should have this flag checked. If the field is not checked, packed decimal numbers will be treated as integers. Intermediate results in arithmetic calculations will be rounded to the next whole number, resulting in loss of decimal point precision. The number of decimal places is only taken into account when you output the answer with the WRITE statement.

1.1.11 Start via Variant

If checked, the program can only be executed via a variant.

1.2 Source Code

When coding programs, it is desirable to have a consistent format for maximum readability, and thus maintainability.

1.2.1 General Programming Requirements

1.2.1.1 Authorization Checking

All custom developed programs must perform adequate authorization checks to enforce the NASA SAP Security and Authorization Guidelines. This applies to executable programs, function modules, dialog modules, subroutines, and, classes and interfaces.

1.2.2 Executable Programs: (Template Y_EXECUTABLE_PROGRAM)

All executable programs should have the following structure:

1. Header documentation (YREPORTHDR)

*---**
*
Confidential and Proprietary

*
Copyright 2001, NASA

*
All Rights Reserved **
*
ABAP Name:

Zxxxxxxxxxxxxxxx

*
Created by:

*
Created on:

mm/dd/yyyy.

*
Version:

n.n
*---
* Comments: purpose, use, design, structure, testing hints, etc
*
*
*---
*
Modification Log:

*
Date

Programmer
Correction
Description
*
01/29/2001
Added……

DEV190001
Added……
*---

You can insert this header into the ABAP using the ‘Insert Statement’ function found on menu path “Edit (Pattern”.

2. Introductory REPORT or PROGRAM Statement

3. Local Classes, Interfaces and Methods for Object Oriented Programming (if needed).

4. Declarative elements or ‘TOP’ include(s) for declarative elements

· TYPES OR TYPE-POOLS

· SELECTION-SCREEN BEGIN / END

· SELECT-OPTIONS

· PARAMETERS

· TABLES

· CONSTANTS

· DATA

· RANGES

· FIELD-GROUPS

· FIELD-SYMBOLS

5. Event elements

· INITIALIZATION

· AT SELECTION-SCREEN

· START-OF-SELECTION

· GET / GET LATE

· END-OF-SELECTION

· TOP-OF-PAGE

· END-OF-PAGE

· TOP-OF-PAGE DURING LINE-SELECTION

· AT LINE-SELECTION

· AT PFnn

· AT USER-COMMAND

Events should have a defining header to separate them from the processing logic.

Example

**
*

START-OF-SELECTION PROCESSING
 *

**

6. Subroutines

· FORM

· Local data declarations:

· DATA

· STATICS (like global CONSTANTS)

· Etc.

· ENDFORM

All forms should have defining headers with a short description of what the form does at each logical break in the code.

Example:

* FORM AUART_VALUE_REQUEST *

* Returns a pop-up screen with order types that are used for *

* the Sales organization, distribution channel, division. *

* *

1.2.3 INCLUDE Programs:

An INCLUDE program is not executable on it’s own. It used to define common data objects and/or logic which may be incorporated in many other programs by reference via the ABAP statement ‘INCLUDE <report name>’.

Include program contents are therefore usually has quite a discrete structure:

1. Report documentation (YREPORTHDR)

*---**
*
Confidential and Proprietary

*
Copyright 2001, NASA

*
All Rights Reserved **
*
ABAP Name:

Zxxxxxxxxxxxxxxx

*
Created by:

*
Created on:

mm/dd/yyyy.

*
Version:

n.n
*---
* Comments: purpose, use, design, structure, testing hints, etc
*
*
*---
*
Modification Log:

*
Date

Programmer
Correction
Description
*
01/29/2001
B. Johnson
DEV190001
Added……
*---

You can insert this header into the ABAP using the ‘Insert Statement’ function found on menu path “Edit (Pattern”.

Followed by either:

2. Declarative elements.

or

3. Program logic

· Functions

· Function documentation. For function modules use the function documentation pattern YFUNCTIONHDR instead of YREPORTHDR.

· FUNCTION <name>.

· Function local interface documentation generated by the function builder. Do not change.
· Local data declarations:

· DATA

· Etc.

· Function logic

· ENDFUNCTION

· Modules

· Descriptive header

Example:

--

* MODULE SET_PFSTATUS OUTPUT *

--

* Set GUI Status based on whether the transaction is a *

* CREATE< CHANGE or DISPLAY *

* *

--
· MODULE <name> {OUTPUT}

· Screen Logic

· ENDMODULE

· Subroutines

· Descriptive header

Example:

* FORM AUART_VALUE_REQUEST *

* Returns a pop-up screen with order types that are used for *

* the Sales organization, distribution channel, division. *

* *

· FORM <name>

· Local data declarations:

· DATA

· STATICS (like global CONSTANTS)

· Etc.

· Subroutine logic

· ENDFORM

1.2.4 Module Pool Programs:

Module pools (also known as Dialog Modules) are associated with transaction screen flow. The programs consist of data definitions, MODULE / ENDMODULE coding blocks, and subroutines. These program elements may be found directly in the program or, using the traditional approach, as INCLUDE programs within the module pool program.

Custom module pool program structure:

1. Header documentation (YREPORTHDR)

*---**
*
Confidential and Proprietary

*
Copyright 2001, NASA

*
All Rights Reserved **
*
ABAP Name:

SAPLZxxxxxxxxxxxxxxx

*
Created by:

*
Created on:

mm/dd/yyyy.

*
Version:

n.n
*---
* Comments: purpose, use, design, structure, testing hints, etc
*
*
*---
*
Modification Log:

*
Date

Programmer
Correction
Description
*
01/29/2001
B. Johnson
DEV190001
Added……
*---

You can insert this header into the ABAP using the ‘Insert Statement’ function found on menu path “Edit (Pattern”.

2. INCLUDE LZxxxxxxxxTOP – Data declarations

3. INCLUDE LZxxxxxxxxOxx – Process Before Output Modules

4. INCLUDE LZxxxxxxxxIxx – Process After Input Modules

5. INCLUDE LZxxxxxxxxFxx - Subroutines

1.2.5 Function Pool (Group) Programs:

Function groups programs are containers for function modules and are maintained by the function builder. Like Module Pool programs, they only contain INCLUDE statements. They should not be changed manually.

1.2.6 Function Module Programs:

Function modules are ABAP routines that are stored in a pool called a Function Group in a central function library. They are maintained by the function builder.

Like form routines, function modules encapsulate program code, and provide an interface for data exchange. They differ from form routines in that they:

· possess a fixed interface for data exchange, making it easier to pass input and output parameters to and from the function module.

· support exception handling.

· use their own memory area and do not share memory with the calling program.

Custom function module program structure:

1. Function documentation (YFUNCTIONHDR)

*---**
*
Confidential and Proprietary

*
Copyright 2001, NASA

*
All Rights Reserved **
*
Function Name:

Zxxxxxxxxxxxxxxx

*
Created by:

*
Created on:

mm/dd/yyyy.

*
Version:

n.n
*---
* Comments: purpose, use, design, structure, testing hints, etc
*
*
*---
*
Modification Log:

*
Date

Programmer
Correction
Description
*
01/29/2001
B Johnson
DEV190001
Added……
*---

You can insert this header into the ABAP using the ‘Insert Statement’ function found on menu path “Edit (Pattern”.

2. FUNCTION statement.

3. Local interface documentation

4. Local data declarations.

5. Function logic

6. ENDFUNCTION

1.2.7 Subroutine Pool Programs:

Subroutine pool programs are collections of FORM routines called from external programs.

Custom subroutine pool program structure:

1. Header documentation (YREPORTHDR) for subroutine pool

*---**
*
Confidential and Proprietary

*
Copyright 2001, NASA

*
All Rights Reserved **
*
ABAP Name:

Zxxxxxxxxxxxxxxx

*
Created by:

*
Created on:

mm/dd/yyyy.

*
Version:

n.n
*---
* Comments: purpose, use, design, structure, testing hints, etc
*
*
*---
*
Modification Log:

*
Date

Programmer
Correction
Description
*
01/29/2001
B. Johnson
DEV190001
Added……
*---

You can insert this header into the ABAP using the ‘Insert Statement’ function found on menu path “Edit (Pattern”.

2. Descriptive header for each FORM.

Example:

* FORM AUART_VALUE_REQUEST *

* Returns a pop-up screen with order types that are used for *

* the Sales organization, distribution channel, division. *

* *

3. FORM statement with interface parameters

4. Local data declarations.

5. Subroutine logic

6. ENDFORM

1.2.8 Class Pool Programs:

Classes are created and maintained using the Class Builder. Header documentation for class programs is placed in the Class Documentation, as the ABAP editor cannot edit class pools.

1.2.9 Interface Pool Programs:

Header documentation for interface programs is placed in the Interface Documentation, as the ABAP editor cannot edit interface pools.

1.3 Documentation

1.3.1 Program Documentation:

ABAP code is fairly self-documenting, and the version management, object navigator and cross-reference tools of the ABAP Workbench provide a very good technical perspective of an ABAP and its change history. However, the purpose of changes, the specific business or technical need being addressed may not be obvious. Also, there may be prerequisite or follow-on activities, or precautions on the use of the program. Therefore it is prudent to provide future programmers with documentation of the program purpose, use, changes, enhancements, additions, and deletions.

A complete repository of the program, from requirements identification through functional design, technical design, program documentation, test results and implementation is maintained on the Lotus Notes MDM Change Management DB.

To aid in future maintenance and enhancement of the program, the programmer should briefly explain the purpose, use, design, structure and any testing hints at the top of the program. Additionally, maintain a chronological history of modification notes; with the latest change being the last entry in the modification log. The documentation block should be placed at the top of the main program.

Comments should be placed throughout the program to identify ABAP events, explain program logic, and the purpose of subroutines.

1.3.1.1 Class Pool Documentation

Class pool documentation is maintained in the Class Builder. For custom classes, the documentation should have the following format.

CL ZCL_nnnnnnnnnnnnnnnnn

Ownership:

Confidential and Proprietary

Copyright 2001, NASA

All Rights Reserved

Created by:

Created on:

mm/dd/yyyy.

Version:

n.n

Modification Log:

Date

Programmer
Correction
Description

01/29/2001
B. Johnson
DEV190001
Added……

Functionality:

Description of class

Relationships:

Relationships with other classes

Example:

Example showing use of CLASS

Notes:

Special considerations

Further Information:

Where to find more informaiton

1.3.1.2 Interface Pool Documentation

Interface pool documentation is maintained in the Class Builder. For custom interfaces, the documentation should have the following format.

IF ZIF_nnnnnnnnnnnnnnnnn

Ownership:

Confidential and Proprietary

Copyright 2001, NASA

All Rights Reserved

Created by:

Created on:

mm/dd/yyyy.

Version:

n.n

Modification Log:

Date

Programmer
Correction
Description

01/29/2001
B. Johnson
DEV190001
Added……

Functionality:

Description of class

Relationships:

Relationships with other classes

Example:

Example showing use of CLASS

Notes:

Special considerations

Further Information:

Where to find more informaiton

1.3.2 Changes and Enhancements:

If a modification is made to an existing custom ABAP program, an entry should be made in the modification log with the date, programmer’s initials, correction number, change management number (?) and brief description. Also, in the program code, a comment should be added to the effected lines indicating the correction number.

Example:

IF SY-SUBRC NE 0.

“DevK9000045

Exit.

“DevK9000045

ENDIF.

“DevK9000045

1.3.3 User Documentation:

User or use documentation should be maintained using the ABAP documentation feature through the menu toolbar “Goto (Documentation (Change”. You will then be presented with SAP’s standard program documentation template with paragraph headers for:

· TITLE: copied from the attributes screen title field.

· PURPOSE: detailed User description of the program’s purpose. Include any precautions the user should be aware of resulting from the execution of this program.

· INTEGRATION: integration points with other applications or partner systems

· PREREQUISITES: describe any prerequisite activities.

· FEATURES:

· Selection: - advice on selection screen fields

· Standard Variants: - pre-defined variants set up for general reporting needs

· Output: - content of the print list

· ACTIVITIES: - follow-on activities. As an example, instructions for interactive reporting

· EXAMPLES: - processing hints, helpful information on running the program.

This documentation is then available to the user at execution time through the same menu path described above or though “Program Documentation” icon which is automatically added to the report selection screen Application Toolbar in the GUI interface.

1.4 Text Elements

Each ABAP should have associated text elements and constants from the source code placed within the Text Elements section of the ABAP Editor:

1.4.1 Titles and Headings

- The heading should always be completed in as much detail as possible. Use of standard headings is preferred as they can be easily made multilingual. The alternative is coded headings, which require further coding for each language supported. Note: Any data entered here will not show up in the report header if the program uses the “No Standard Page Heading” phrase and codes a custom header.

1.4.2 Selection Texts

All system SELECT-OPTIONS and PARAMETERS are limited to 8 characters and as a consequence should always have selection texts set to improve user understanding.

1.4.3 Text-Symbols

Literal text that is printed on the report can be handled two ways. One way is to hard code the literal in the code and give the option of maintaining Text Elements for multilingual clients.

Example:

WRITE: / ‘Grand Total:’(001).

The advantages of this method are readability and only the text element needs to be maintained for multilingual clients.

As a standard, use the following example.

Example:

TEXT-001 defined as ‘Grand Total:’

WRITE: / TEXT-001.

The advantage of this method is ease of maintainability if TEXT-001 is coded several times in the program and needs to be changed.

1.5 Variants

Variants may be created for executable ABAP programs. They are sub-objects of a program and are not shared with any other program. Variants allow you to save sets of input values for programs that you often start with the same selections.

The naming conventions for variants are found in NASA Core Financials Development Naming Standards.

Style Guidelines

1.6 ABAP Style Guidelines

The SAP Style Guide found on the online help, menu path “Help (SAP Library”, provides guidelines for developing the user interface for R/3 applications. The aim of the Style Guide is to support developers when creating user-friendly and standard software for the SAP System.

The goals of Style Guide are:

· higher user productivity

· greater user satisfaction with the product

· lower user error rate

The Style Guide concerns all the applicable SAP design guidelines. The SAP Style Guide is based on platform-specific style guides such as the IBM CUA Guidelines, the Windows Style Guide or the Apple Macintosh Human Interface Guidelines, which have been adapted and added to meet SAP’s business needs.

Stated another way, the Style Guide concerns design guidelines for the graphical user interface (GUI) or, the presentation and interaction of the application with the active user. These guidelines primarily pertain to the screen (window) components shown below and window navigation.

1.6.1 R/3 Design Elements

[image: image1.png]
1.6.2 Work Area Design Elements

[image: image2.png]
1.7 NASA Style Guidelines

NASA style guidelines are content focused, concerning the presentation of information in selection screens, custom transaction screens and the report output generated.

Specific guidelines will be prepared for each application area and attached to these guidelines as appendices. General guidelines follow.

1.7.1 Window Titles

Custom transaction and program selection screens must identify their ownership and purpose.

Example

NASA MSFC PROJECT STS100 MATERIAL REQUIREMENTS

1.7.2 Selection Screens

Fields should be grouped and arranged in order of importance from upper left to bottom right.

1.7.3 Transaction Screens

See ergonomic examples found under menu path ‘Environment (Ergonomic examples (Screens’.

1.7.4 Online Help

Each custom program / transaction must have sufficient online help for the user to effectively use the function. Additionally, field level help and ‘Possible entries’ support should be utilized whenever possible.

1.7.5 Report Titles

Report titles should appear at the top of each page and include title line(s) centered in the page and the date at the right, top margin. If the report is for a specific business object (ie. Purchase Order, Cost Center), this should be included in the title.

Example

 Purchasing Documents Per Vendor 03/29/2001

1.7.6 Report Headings and List Format

See ergonomic examples found under menu path ‘Environment (Ergonomic examples (Lists’.

1.7.7 Report Footings

Footings should appear on each page and include the program name at the left margin and the page number at the right margin.

Example

ZMM_PUR_VENDOR_POS

 Page 1

2 ABAP Programming Advanced Techniques

2.1 Message Classes

User and system messages used during program or report processing are organized in SAP by Message Class and Message Number. Transaction SE91 is used to create and maintain these Message Classes and Messages. Refer to ‘NASA Core Financials Development Naming Standards’ for details.

Messages should be used in all dialog processing and in conveying errors or processing status in an online program execution to the user.

2.2 Views

A view is a virtual table. This is a table that is not physically stored but is instead derived from one or more other tables.

This derivation process might involve simply transferring only certain records from a base table to the view. More complex views can be assembled from several tables.

A view can be tailored to the needs of a specific report, making it possible to directly access specific data. The structure of such a view is defined by specifying the tables and fields to be contained in the virtual table. If a table contains many fields and only a few of these fields has to be read by a report, access to the data can be simplified by creating a view containing only these fields. By accessing the view instead of the table, significant performance enhancements can be made.

To ensure that only semantically meaningful views are created, only tables linked by foreign key relationships in the ABAP Dictionary can be connected in a view.

The first table to be selected is the primary table of the view. Other tables can be added. These tables must be connected to the primary table by foreign keys. The fields to be contained in the view can then be selected from the Base tables defined for the view.

2.3 Internal Tables:

The main purpose of this section is to examine ABAP performance and how that relates to overall system requirements and constraints. As is most often the case, the majority of processing time for custom developed ABAP’s, (upwards of 90% in most cases), is spent in database accesses.

This is usually a result of

1. nested select statements,

2. inefficient where clauses in select statements, or

3. simply functional requirements that do not match well with SAP’s table relationships.

Regardless of the cause, the use of internal tables can drastically reduce database access, and thus, reduce report run time.

2.4 Possible Uses Of Internal Tables

2.4.1 A Large Number Of Database Accesses Are Foreseen

In situations where a large number of database accesses are foreseen on a given table or where certain information from a table may be needed more than once, it may be a good idea to move all (or a significant portion) the necessary fields into an internal table in one statement. This information will then be available to the program as many times as is necessary and will require no further database accesses.

2.4.2 Replacing Nested Selects

Another very beneficial use of internal tables is to replace one or many levels of nested selects in report selection logic. Loop processing can then be performed on this internal table for subsequent selects into other tables. The key benefit in this approach is that the number of accesses to the higher level table in the database is significantly reduced. This also takes away the risk that Oracle will lose track of the database cursor in its’ roll area. (A problem for some larger reports.)

2.5 Performance Concerns: Internal looping vs. Nested selects

Available memory for reporting per user is the main risk in the extensive use of large internal tables versus standard nested select statements. By answering several questions, the developer should be able to determine which method is appropriate.

1. What is the probable size requirement for the internal table in a production environment?

2. How many times will this data be needed?

3. Will all of this data be needed?

2.5.1 The tradeoff

If you will only need the data once and it is a small amount of data, (number of accesses) the use of an internal table is not necessary. If there is a lot of data and several selects based on that data, use an internal table.

Common sense is key, i.e. It does not make sense to load the entire material master into an internal table, but a specific list of materials, transactions, or documents from which to start looping is an ideal situation for internal tables.

The primary goal is to fill this table with the most finite list of data that can be constructed from the select statement that will be used to populate it. In terms of nesting, each record at a high level table can result in hundreds of records that relate to it in subsequent lower level select statements, which is why it is so necessary to be specific.

2.5.2 Methods Of Internal Table Population

Select statements that query only the necessary columns from a table are more efficient than select * from table. Only the fields that are needed for report functionality are selected and stored for later use.

Selecting directly into an internal table also reduces run time and negates the need for an end select and an append. (This is not conducive to loop processing since the table is populated instantly) When selecting by columns into an internal table or structure, the order in which the columns appear in the database must correspond to the order in the select statement, as well as the order of the fields in the internal table/structure data declaration.

Example:

Data: begin of i_tab occurs 10,

kunnr like kna1-kunnr,

name1 like kna1-name1,

telf1 like kna1-telf1,

end of i_tab.

Select kunnr name1 telf1 from kna1 into table i_tab
where land1 eq ‘USA’.

Or

Select kunnr name1 telf1 from kna1 into i_tab where land1 eq ‘USA’.

 Append i_tab.

Endselect.

Sort i_tab by kunnr.

The data contained in this table can now either be looped through, or read one line at a time by the statement:

Read table i_tab with key kunnr binary search.

This will move the values within the selected line into the header of the table and make it available for use within the program.

2.6 Free System Resources

As a final note on the usage of internal tables, it is important to free up the space reserved for the tables after the data contained within is no longer needed. Each user has a predefined limit concerning memory usage and availability. This amount is reserved at the application server level. By freeing up this space, there is less risk of surpassing the memory capacity of the roll area that would result in paging of the held data.

Retrieving data that has been paged is more time consuming than data held in the roll area. The free command is usually issued immediately after the last line of code that processes the internal table. This will keep the roll area that is reserved for that particular user to a minimum level. Example of Free Command:

Loop at i_tab.

 Select vbeln posnr from vbak into xvbak
where kunnr eq i_tab-kunnr.

 Append xvbak.

 Endselect.

Endloop.

Free I_tab.

(if fields in i_tab are no longer needed.)

2.7 Field Groups

A field group combines several existing fields together under one name. You use the INSERT statement to determine which fields belong to a field group at runtime

Example:

FIELD-GROUPS: HEADER, ORDER, PRODUCT.

Neither defining a field group (statically) using FIELD-GROUPS nor filling a field group (dynamically) with INSERT generates more memory. Rather, there exists for each field group element a pointer to an (existing) field.

The use of field groups is an alternative method to internal tables for data storage and loop processing. Data selection itself does not vary whether you are using internal tables or field groups.

Some distinguishing characteristics are the method in which they are populated, and the manner in which you can process them. An internal table is declared through explicit definition of the structure and an occurs statement, and is populated through appending. Field groups are declared, then specific fields are inserted into each field group for definition. At field group population time, the term Extract <field group> populates all fields in the field group with the current value for those fields from within the report. There is no tangible table to see, as SAP stores the information internally in existing SAP tables.

2.7.1 INSERT f1 f2 ... INTO fg.

Inserts one or more fields into the field group fg.

1. This basic form of INSERT is not a declarative, but an operational, statement, i.e. it must be executed at runtime.

2. A field group can only accept global data objects, not data objects which have been defined locally in a FORM or FUNCTION.

3. The actual data transport is performed by EXTRACT.

4. As soon as the first dataset for a field group has been extracted with EXTRACT, the field group can no longer be extended with INSERT. The field group HEADER cannot be extended at all after the first EXTRACT (regardless of the field group).

2.7.2 Extract <fg>.

Writes all fields of the field group fg as one record to a sequential dataset (paging). If a field group HEADER has been defined, its fields prefix each record to form a sort key. You can sort this dataset with SORT and process it with LOOP ... ENDLOOP. After this, EXTRACT cannot be execuuted again

As soon as the first dataset for a field group has been extracted with EXTRACT, the field group cannot be expanded using INSERT. The field group HEADER, in particular, cannot be expanded after the first EXTRACT (regardless of field group).

2.7.3 Field Group Processing

Loop processing for field groups is similar to loop processing for internal tables. This is accomplished through the use of ‘Loop…Endloop’ construct. Some key differences are that field group processing allows more flexibilty regarding sorting, resorting, control breaks, and subtotaling and totaling functionality. A field group can be sorted and resorted by any field or combination of fields that are declared in the header field group.

These fields are also the ones available for control breaks, i.e. at new company code, at end of customer number…These are all accomplished through the use of the ‘At…Endat’ construct. The fields referenced in the At statement must be contained in the Header field group.

2.7.4 Sample of Field Group usage in a program:

Field-groups: header, detail.

Insert:
kna1-kunnr

vbak-vbeln into header,

vbak-vbtyp

vbak-netwr

vbak-knkli into detail.

Select kunnr from kna1 into xkna1 where land1 eq ‘USA’.

 Select vbeln vbtyp netwr knkli from vbak into xvbak where

 kunnr eq xkna1-kunnr.

 Extract: Header, Detail.

 Endselect.

Endselect.

Sort by kunnr vbeln. (Always qualify sort comment with specific sort order only)

Loop.

At first.

(write heading…)

endat.

At new kunnr.

(write customer number or subheading…)

endat.

At Detail.

(Write detail information for the specific customer in current loop pass, this includes document information from vbak that is within the detail field group…)

Endat.

At end of kunnr.

(Write total of documents for that particular customer…)

Endat.

At Last.

Write total of all documents pulled for this report…)

Endat.

Endloop.

2.8 General Use Function Modules

SAP is delivered with numerous general use function modules that can reduce the development effort when dealing with common issues. These functions are documented on the SAP Library in folder ‘Basis Components (ABAP Workbench (BS Extended Applications Function Library’. The following is a list and brief description of some example function modules that may be used on a regular basis:

2.8.1 Date Oriented Function Modules:

These call functions are a convenient for taking a calendar date and converting it into a period, creating date ranges based on fiscal period, and vise versa. These are essential because the system classifies transactions according to calendar date, period in which they occur, or both.

DATE_TO_PERIOD_CONVERT

Pass the module a calendar date (YYYYMMDD) and it returns the corresponding fiscal year and fiscal period.

FIRST_DAY_IN_PERIOD_GET

Pass the function module the desired fiscal period, fiscal
year, and fiscal year variant, and the function module returns the calendar date of the first day of the required period.

LAST_DAY_IN_PERIOD_GET

Pass the function module the desired fiscal period, fiscal year, and fiscal year variant, and the function module returns the calendar date of the last day of the required period.

LAST_DAY_IN_YEAR_GET

Pass the function module the desired fiscal year and fiscal year variant, and the function module returns the calendar date of the last day of the fiscal year.

WEEK_GET_FIRST_DAY

Pass the function module the 2 digit week identifier and calendar year of concern, and the function module returns the date of the first day of that particular week.

2.9 Logical Database:

A logical database is a predefined view of the database. This path provides a link to records that are physically separate but functionally link. The use of logical databases in ABAP programming takes away the need for manually creating the linking of tables through select statements, providing all of the necessary tables are contained in the structure of the logical database.

Although these provide a major time savings for the developer, they can often pull far more data than is actually necessary since there is no discrimination of data that is selected. When a logical database is entered in the attributes section of the report, a predefined selection screen for the report is generated. Additional selections can be added below the standard selection screen by the developer and can be referenced between the appropriate Get statements for the logical database.

2.10 Use of Indices:

The creation of or use of an index is recommended when it is not possible to supply a fully qualified primary key in a select statement. An index is updated each time the actual table is updated, and thus requires some amount of system resources during transaction creation. For this reason, it is important to create them sparingly.

The fields in the where clause of the select statement must be in the same order as they appear in the index. This is necessary since it is Oracle that decides whether or not to use the index. By successfully using an index, one can avoid a whole table search, and thus reduce significantly the time spent in database access.

3 Customer Enhancements – Enhancement Projects

SAP has anticipated certain customer requirements for enhancements to the SAP standard system. These potential enhancements are at pre-planned locations within dialog (screen) or program logic. They allow the customer to modify predefined, empty or unused programs, screens or screen function codes.

Using customer exits is preferred over options to modify SAP code or create custom transactions as the upward compatibility is guaranteed by SAP. This is because jumps to exits are predefined in the standard software and the validity of the call interface are both retained, even in future release upgrades.

When an enhancement requirement to a standard SAP transaction has been identified, the technical designer should consider this alternative, provided SAP has a pre-defined an enhancement that can potentially meet the need.

To create a customer enhancement, you must first create an enhancement project. To do this use transaction CMOD which will prompt you for the enhancement project name and description.

Once the enhancement project is created, use transaction CMOD again to assign the pre-defined enhancement to the project and work with the enhancement components and finally activate the enhancement project.

4 Changing SAP Code

Changes to SAP programs are usually recommended by SAP via SAP OSS Notes to solve specific customer issues. Although, the customer may also may the determination after reviewing all options, that changes to SAP programs are needed.

Whatever the source, there must be tight controls when making changes to SAP code and such changes must first be approved by NASA Core Financials management.

It is critical that any code changes to the SAP code are clearly documented. The standard is to create a section in the Program Header (see below), detailing the date the changes were made, who made the changes, the Repair number, the issue number the change relates to (found in the Change Management Logs), the OSS Note Number and a short description.

Example

*---**
* Modification Log:

* Date

Programmer
Correction
Description
* 01/29/2001
B Johnson
DEVK900012
OSS 1234567 repair
* RFC errors
*---

The code changes made in the SAP Standard Programs must follow the documentation standards used by SAP, with the addition of the correction number in the comments.

Example

*>> BEGIN OF INSERT OSS 1234567 DEVK900012
 IF SY-SUBRC<> 0.

 PERFORM CHECK_RFC.
 ENDIF.
*<< END OF INSERT OSS 1234567 DEVK900012

5 APPENDIX A: Programming Guidelines

This section is an overview of general programming guidelines intended for less experienced ABAP programmers.

5.1 Writing Maintainable Code

The ABAP programming language is an event-driven language. This means that it does not necessarily process statements in sequential order as they occur. However, you can combine this feature with some solid housekeeping and organization of your code, and develop very powerful and maintainable code.

To do this, keep related blocks of code together and in the order they will normally be processed. Don’t just write code as you find the specifications and rely on ABAP to sort things out and process them in the proper order.

5.1.1 Program Structure

Start all programs with a documentation header containing:

· Client Information

· ABAP Name

· author’s name

· create date

· version number

· Comments (purpose, use, design, structure, testing hints, etc)

· Modification Log with date, programmer, CTS number and Description

Next, place all data declarations at the top of your program. This does two important things. The code becomes easy to read and search for table or field definitions. And the data becomes globally available, should you need to add routines later in the program. Data that is defined throughout the program without any forethought can cause problems when something gets reused or redefined unnecessarily. It also breaks your train of thought when debugging complex logic.

Following the data declarations are the event elements of the program. They should be placed in the following order:

· INITIALIZATION

· AT SELECTION-SCREEN

· START-OF-SELECTION

· GET / GET LATE or SQL statements

· END-OF-SELECTION

· TOP-OF-PAGE

· END-OF-PAGE

· TOP-OF-PAGE DURING LINE-SELECTION

· AT LINE-SELECTION

· AT PFnn

· AT USER-COMMAND

After the event elements are the local subroutines (FORM routines) performed by the event processing logic or from other FORMs.

5.1.2 Modularization

Usually, the main processes of an ABAP program occur at the START-OF-SELECTION or at the END-OF-SELECTION events. Design your code so that the main processing section, or client, controls all program action. Organize all remaining code into logical groups or subroutines that are executed, called, performed, or passed temporary control by the client. That is, they should all work as servers to the main processing section, of your program. Control should always return to the client, unless errors occur that need to be amended immediately, or in rare instances, when you need to pass explicit control to the next module.

Place the server sections of code after all event elements of the program in the normal order they will be processed. This will make your code more readable. If a section of code is called by several subroutines, place it after the last subroutine that calls it. When it does not make sense to separate the code into subroutines, separate the functionally related code via comments and blank lines to logically group sections of code that will be processed and/or maintained together.

5.1.3 Statement Format

Avoid using comments on statement lines. Use separate and distinct comment lines at the beginning of the form/module containing the code. If you are writing a particularly complex statement (IF, CASE, etc.), place your comments just prior to the code being described / executed.

Although ABAP allows multiple commands on the same line, place each command on a separate line for readability. This also makes it easier to update / delete code.

After you have checked your program via syntax ‘Check’ and successfully saved it, use pretty printer to align statements and make the code more readable. If you have aligned all of the statements yourself, make sure you have saved the program and compared the before and after product. Your own indentations, etc. may be preferable to the pretty printer output.

Do not keep blocks of dead code in custom developed programs, as they can be confusing. Use version management to create a backup version of source code if you feel you may need the code and a version has not been generated by prior transport(s) of the program.

5.1.4 Pre-defined Coding Blocks

Use the ready-made patterns or structures available via the editor “Pattern” function to insert tailored ABAP statement structures or, comment or coding blocks into your program.

To insert ready-made patterns:

1. Place the cursor on the line following where you want the pattern and click on the “Pattern” function or press CNTL-F6.

2. In the pop-up window, select the appropriate radio button for the statement or pattern desired.

3. Enter the development object name (ie. Function Module, Database Table, Authorization Object, etc) or , the comment or coding block name.

4. Click “Continue” or press <ENTER>.

5. Choose the specific field names, conditions or qualifications relative to the ABAP statement being inserted.

6. Click “Copy”.

Example

In your program, you need to determine the first day in the fiscal period. To do this you choose to use the ‘FIRST_DAY_IN_PERIOD_GET’ function module.

The screen below shows the Pattern Insert screen with the needed selections to insert this function call.

[image: image3.png]
This results in the following coding block being inserted into the program with all the interface parameters identified and basic return code check coding.

CALL FUNCTION 'FIRST_DAY_IN_PERIOD_GET'

 EXPORTING

 I_GJAHR =

* I_MONMIT = 00

 I_PERIV =

 I_POPER =

* IMPORTING

* E_DATE =

* EXCEPTIONS

* INPUT_FALSE = 1

* T009_NOTFOUND = 2

* T009B_NOTFOUND = 3

* OTHERS = 4

 .

 IF SY-SUBRC <> 0.

* MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO

* WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.

 ENDIF.

5.1.5 Performance Considerations

Remember to free the data spaces (see the FREE command in your ABAP manual or refer to Performance and Tuning Guidelines in a later chapter) for large tables or field strings that are no longer needed.

When performance is a major concern, organize your program into distinct modules that can define the data needed, process it, and free the space. In these situations, it may make sense to separate your code into include modules or external function modules for clarity of code and possibly performance (different rule sets apply for tuning modules and calls). If properly organized, you can write code in this fashion, so that data is defined throughout the program, rather than all at the top. When coding in this fashion, use liberal comments to explain what is going on and when and why data can be defined and freed.

If the data is to be used only within a function module or subroutine, place the definition at the top of the routine and free the space at the end. Remember to pay close attention to rules for global and local data definitions for programs with sub-routines, especially external routines.

5.1.6 Version Management

Version management of the ABAP editor allows you to keep historical versions of your program throughout it’s life, from initial development through the layered testing and approval staging to production, and, ongoing maintenance and enhancement.

Each time you release your program for transport, a new version is created. You can also choose to generate a version yourself if, for example, you are at a major mile stone in the development and new requirements have been identified, which are a substantive change. In both cases the version created becomes backup copy of the program.

5.1.7 DEFINING DATA FIELDS AND TABLES

If you use a constant frequently, do not define it as an explicit literal value over and over. Set up an internal field with the CONSTANTS statement with the VALUE option. If the value changes, you will only need to change the constant once to effect the change. If the value changes over time, consider using PARAMETER, SELECT-OPTION, dynamic TVAR variable, etc. to avoid program maintenance.

Example

MOVE ‘150’ TO MY_SCREEN_NUM.

. . .

MOVE ‘150’ TO MY_SCREEN_NUM.

. . .

MOVE ‘150’ TO MY_SCREEN_NUM.

==>
Will work, but requires changes be make in several places when the screens
are renumbered.

CONSTANTS: SCREEN_LITERAL(3) TYPE N VALUE 150.

. . .

MOVE SCREEN_LITERAL TO MY_SCREEN_NUM.

. . .

MOVE SCREEN_LITERAL TO MY_SCREEN_NUM.

. . .

MOVE SCREEN_LITERAL TO MY_SCREEN_NUM.

==>
Will require only one change when the screen numbers change.

If you need extra work fields for database fields, use SAP field names whenever possible and use the LIKE option to ensure the data attributes match. This will also avoid maintenance problems should the data base field change.

When naming fields, avoid the use of hyphens, since they indicate field strings and ABAP keywords.

Instead of hard-coding text literals, use Text Elements for headers, report titles, column headings, selection texts and numbered texts. They are easier to find and change, and only need to be changed in one place - one time. When the same literals are used in several programs, they are easy to copy from one program to the other, rather then cut-and-paste or retyping of hard-coding.

When defining customer tables or internal tables:

Use the same field names as any existing SAP tables - e.g. Use MANDT, not CLIENT.

If the SAP name is confusing, use the short text (in table/DD) and comments in DATA(ABAP) to clarify. The SELECTs, Ifs, CASE, etc. will be much easier to understand and debug when all data fields match.

Use the same DATA ELEMENT, TYPE, DOMAIN, etc. for any fields where comparisons will take place. Although the system will perform automatic type conversions, they are CPU/DB intensive and results can not be guaranteed for all comparisons after data conversion.

5.1.8 Field symbols

Field symbols are symbolic fields or structures that can be assigned dynamically to other fields and field structures at runtime using the ASSIGN statement. Field symbols can dramatically reduce the amount of code used in a routine, therefore reducing execution time. However, because the code becomes symbolic, it can be difficult to read later and becomes less maintainable.

Example
Code using absolute field names

get cursor field v_field.

case v_field.

 when ‘ZSCRFLD-WEEK01’.

 perform f_process_week using zscrfld-week01.

 when ‘ZSCRFLD-WEEK02’.

 perform f_process_week using zscrfld-week02.

 when ‘ZSCRFLD-WEEK03’.

 perform f_process_week using zscrfld-week03.

 when ‘ZSCRFLD-WEEK04.

 perform f_process_week using zscrfld-week04.

. . .

. . .

 when ‘ZSCRFLD-WEEK51’.

 perform f_process_week using zscrfld-week51.

 when ‘ZSCRFLD-WEEK52’.

 perform f_process_week using zscrfld-week52.

 when others.

endcase.

Code using field symbols

field symbols: <fs_week>

get cursor field v_field.

if v_field cs ‘ZSCRFLD-WEEK’.

 assign (v_field) to <fs_week>.

 perform f_process_week using <fs_week>.

endif.

5.1.9 Example Program

REPORT ZRIM01 .

AUTHOR:
JOHN DOE.

DATE:

10-15-94.

DESCRIPTION:
THIS IS A SAMPLE PROGRAM THAT READS DATA, BUILD A TABLE

AND PRINTS THE DATA. SEE “SAMPLE SYSTEMS MANUAL”

SPECIFICATION #4804, PAGE 12.

USER AREA:
THIS PROGRAM WAS WRITTEN FOR ACCOUNTS PAYABLE.

***PROGRAM CHANGE LOG:

NAME

DATE

DESCRIPTION / REASON FOR CHANGE

J. DOE

10-31-95
ADD COLUMN FOR CITY TO REPORT

TABLES: LFA1.

DATA: BEGIN OF MYTAB OCCURS 10,

 LAND1 LIKE LFA1-LAND1,

 ORT01 LIKE LFA1-ORT01,

 END OF MYTAB,

BAD_REGION_COUNTER(4) TYPE P VALUE 0,

BAD_REGION_COUNTER_TOT(4) TYPE P VALUE 0.

*** BEGINNING OF MAIN PROCESSING LOGIC

10-31-95 ADDED CITY TO WRITE STATEMENT

SELECT * FROM LFA1.

 IF LFA1-LAND1 = 'US'.

* AND LFA1-ORT01 = 'HOUSTON'.

 WRITE:/ 'COUNTRY = ', LFA1-LAND1, ' CITY = ', LFA1-ORT01.

 MOVE LFA1-LAND1 TO MYTAB-LAND1.

 MOVE LFA1-ORT01 TO MYTAB-ORT01.

 APPEND MYTAB.

 IF LFA1-REGIO NE 'TX'.

 PERFORM PRINT_BAD_REGION_MSG.

 ENDIF.

 ENDIF.

ENDSELECT.

SKIP 3.

WRITE: / 'TOTAL RECORDS WITH INCORRECT REGION CODE =',

 BAD_REGION_COUNTER_TOT.

*** END OF MAIN PROCESSING LOGIC

TOP-OF-PAGE.

 WRITE: / ‘THIS IS MY REPORT’.

 SKIP.

END-OF-PAGE.

 WRITE: / ‘THIS IS THE END OF THE PAGE’.

* FORM PRINT_BAD_REGION_MSG *

*

 *

FORM PRINT_BAD_REGION_MSG.

 WRITE: / 'THE FOLLOWING RECORD HAS A BAD REGION CODE'.

 WRITE: / LFA1.

 ADD 1 TO BAD_REGION_COUNTER.

 ADD 1 TO BAD_REGION_COUNTER_TOT.

 IF BAD_REGION_COUNTER GT 25.

 PERFORM PRINT_SPECIAL_MSG.

 ENDIF.

ENDFORM.

* FORM PRINT_SPECIAL_MSG *

*

 *

FORM PRINT_SPECIAL_MSG.

 SKIP 4.

 CLEAR BAD_REGION_COUNTER.

 WRITE: / 'TOO MANY BAD STATE CODES',

 / 'CHECK THE TABLE FOR INPUT ERRORS',

 / 'HIRE A NEW CLERK IF THIS HAPPENS AGAIN'.

 ULINE /2(80).

 SKIP 4.

ENDFORM.

5.2 Using Tables and Fields

5.2.1 Check Return Codes.

Check SY-SUBRC to ensure proper inputs when dealing with tables (e.g.- READ, SELECT, WRITE, GET, PUT).

Value
Description

 0
Read was successful (or the looping structure has terminated

successfully)

 2
Entry found, field values different

 4
Record was not found

 8
Record key was not qualified

 null
End of file

5.2.2 Initializing Fields and Structures

Use “CLEAR <field>“ to initialize rather than explicit moves. When combined with the VALUE option for data definition, you only need to change one statement in the data declaration area should maintenance be required.

Example

DATA: AFIELD(2) TYPE P.

 MOVE 1 TO AFIELD or AFIELD = 1.

or

AFILED = 1.

==>
Will work.

 DATA: AFIELD(2) TYPE P VALUE 1.

 . . .

 CLEAR AFIELD.

==>
is preferred and requires less maintenance.

Always ‘CLEAR’ tables at the end of a loop process to ensure data is not left in the header and mistakenly processed with the next record(s).

Use “REFRESH <table>“ to initialize table records, as opposed to CLEAR for table headers.

5.2.3 MOVE-CORRESPONDING

“MOVE-CORRESPONDING” is good for small tables or tables where most, but not all, fields need to be moved. When all fields need to be moved and the attributes for every field and position are identical, move the table as a group.

“MOVE-CORRESPONDING” will require less maintenance for tables / fields that change over time. However, if the table has several fields the “MOVE-CORRESPONDING” statement can be very costly performance wise.

5.2.4 SORT

Do not use “SORT APPENDS”. It is very CPU intensive and results are often unpredictable. At best, the statement is confusing for the average ABAP programmer.

Always specify Ascending or Descending (even though the default is Ascending) for all SORTS, for readability and unmistakable clarity.

Always code a “BY ‘data field(s)’” clause with the SORT command to increase performance and improve readability. See Performance and Tuning of ABAP Programs for examples.

5.3 Working with Logical Operators and Control Structures

Use COMPUTE rather than several ADD, SUB, MULTI, DIV statements, unless performance is a big concern. The COMPUTE statement is easier to read and maintain. The difference in performance is minute, however, if you are attempting sub-second response for complex transactions, you should use separate statements.

Use “WHEN OTHERS” with CASE statements to capture unexpected errors.

Example

CASE USER-CHOICE.

 WHEN ‘A’.

 PERFORM PROCESS_USER_CHOICE_A.

 WHEN ‘B’.

 PERFORM PROCESS_USER_CHOICE_B.

 WHEN ‘C’.

 PERFORM PROCESS_USER_CHOICE_C.

ENDCASE.

==>
Will work, but will not catch any unexpected values and the program will
continue processing with unwanted results.

CASE USER-CHOICE.

 WHEN ‘A’.

 PERFORM PROCESS_USER_CHOICE_A.

 WHEN ‘B’.

 PERFORM PROCESS_USER_CHOICE_B.

 WHEN ‘C’.

 PERFORM PROCESS_USER_CHOICE_C.

 WHEN OTHER.

 PERFORM PROCESS_USER_CHOICE_ERROR.

ENDCASE.

==>
Will trap the error and allow controlled actions and/or abending of the
transaction.

Break down all LOOPs, Ifs, CASE, etc. statements to their simplest form. Don’t complicate via nesting unless absolutely unavoidable. Never nest more than 3 levels deep.

Avoid the use of negative logic in IF, CASE, SELECT, etc. structures whenever possible.

Example

. . .

SELECT * FROM KNA1,

 WHERE NOT MANDT = ‘001’.

. . .

IF NOT FILEDA = FIELDB.

. . .

ENDIF.

==> Will both work, but is confusing when used in complex or nested structures.

. . .

SELECT * FROM KNA1,

 WHERE MANDT NE ‘001’.

. . .

IF FIELDA NE FIELDB.

. . .

ENDIF.

==>
Is much simpler to read and maintain, expecially when combined with other
logical conditions.

5.4 Performance and Tuning Guidelines

5.4.1 Use SORT to organize reports and data.

Qualify all SORT statements with the BY option and limit the sorting of data to only the fields that must be used to satisfy your reporting requirements. Sorts, in general are very expensive and should be avoided and/or limited whenever possible. Whenever possible, store data in a table in the order needed for reporting / processing, so that sorting is not required.

Example

The customer’s report calls for various fields and totals to be output in order by Company Code, Cost Center, and General Ledger. In this example ZCOMP is filled with Company Code, ZSORT1 is filled with Cost Center, and ZSORT2 is filled with General Ledger.

The data area for the sort were defined in ABAP as follows:

FIELD-GROUPS:

 HEADER,

 DETAIL.

INSERT:

 ZCOMP

 ZSORT1

 ZSORT2

 ZDATE

 ZDOC

 ZLINE

 ZFY

 ZTEXT

 ZAMT

 ZDCIND

 ZPERIOD

 ZACCT

 ZACCT2

 ZCCNTR

INTO HEADER.

...

...

SORT.

==>
Very inefficient for internal tables, however for field groups this is efficient. The system will have to sort based on every field in the table.

SORT ASCENDING BY ZCOMP ZSORT1 ZSORT2.

==> Most effective. Will require about one-fourth the resources as the qualified SORT above and process in a fraction of the time.

5.4.2 Defining Custom Tables.

When defining a custom table, always place the key fields at the front of the record layout (the first few columns). The database attempts data compression for all fields in a table, but cannot compress key fields. Therefore, compression of the data records cannot take place until after the last key field in the table.

Example

For the following table definition:

Field name
Key
Data Element
Type
Length
MANDT
 *
MANDT
CLNT
 3

KUNNR
 *
KUNNR
CHAR
 10

FIELDB

FIELDB
CHAR
 15

FIELDC

FIELDC
CHAR
 15

FIELDD

FIELDD
CHAR
 15

FIELDA
 *
FIELDA
CHAR
 5

FIELDE

FIELDE
CHAR
 20

FIELDF

FIELDF
CHAR
 15

Only FIELDE and FIELDF can be properly compressed by the data base. The other fields, FIELDB, FIELDC, and FIELDD, cannot be compressed and therefore need more disk space and processing resources than necessary.

If the same table is defined as follows, the data base can compress FIELDB, FIELDC, FIELDD, FIELDE, and FIELDF, and therefore, save space and processing time every time the table is accessed. The gains in performance become even greater if the table is placed in a pool or cluster, or processed with foreign keys (matchcodes, etc.).

Field name
Key
Data Element
Type
Length

MANDT
 *
MANDT
CLNT
 3

KUNNR
 *
KUNNR
CHAR
 10

FIELDA
 *
FIELDA
CHAR
 5

FIELDB

FIELDB
CHAR
 15

FIELDC

FIELDC
CHAR
 15

FIELDD

FIELDD
CHAR
 15

FIELDE

FIELDE
CHAR
 20

FIELDF

FIELDF
CHAR
 15

5.4.3 Use of SELECT with Transparent and Pool tables.

Familiarize yourself with the data being processed before using the SELECT statement. Table types greatly influence how you should process data within the ABAP program.

To find out what kind of table you are working with use transaction SE12, Tools(ABP Workbench(Development(ABAP Dictionary. Enter the name of the table and click on DISPLAY to get information on the TABLE TYPE.

If the TABLE TYPE is Transparent or Pool, you should always qualify your SELECT statement as fully as possible with the WHERE option. This includes data fields that may not be part of the key. This allows the database to evaluate the records and return only the records matching your selection criteria.

Example

SELECT * FROM ZZLT2

 WHERE RLDNR = LDGR

 AND RRCTY = ‘0’

 AND RVERS = ‘001’

 AND RYEAR = YEAR.

CHECK COMP.

CHECK ACCT.

CHECK CCNTR.

==>
Will work, but requires a lot of memory & buffers.

SELECT * FROM ZZLT2

 WHERE RLDNR = LDGR

 AND RRCTY = ‘0’

 AND RVERS = ‘001’

 AND BUKRS = COMP

 AND RYEAR = YEAR

 AND RACCT = ACCT

 AND RCNTR = CCNTR.

==>
More efficient for Transparent & Pool tables.

5.4.4 Use of the SELECT statement with Cluster tables.

If the TABLE TYPE is CLUSTER, then just the opposite is true. When working with Cluster tables, you should only qualify SELECT statements with fields that are part of the key. To find out what the key is you should follow the steps above to get the TABLE TYPE and then click on FIELDS. The system will display detailed data about the fields in the table and place a dot under the column marked KEYS for fields that can be used in a WHERE clause as part of a SELECT for Cluster tables. Another way to find out whether a field is part of a key is from within the ABAP editor, you may enter SHOW ‘table name’ on the Command Line to list the table. The key fields will be marked with an X under the column KEY.

If the table is a cluster table, you should then use the CHECK command to eliminate records, after you have narrowed your selections via the WHERE clause for key fields. Cluster tables cannot be processed by the data base directly, as can transparent tables. Forcing the data base to unpack and check fields (as with SELECT statements containing non-key fields in WHERE clauses) is less efficient, in most cases, then qualifying only with key fields and letting ABAP check non-key fields after the data is returned.

Example

For cluster table, BSEG with keys MANDT, BUKRS, BELNR, GJAHR, and BUZEI:

SELECT * FROM BSEG

 WHERE REBZG = BSIK-BELNR

 AND BUKRS = BSIK-BUKRS

 AND LIFNR = BSIK-LIFNR

 AND SHKZG = ‘S’

 AND KOART = ‘K’.

==> Will work, but requires a lot of available memory, buffer space, & data base time to unpack non-keyed data for verification/inclusion. This work takes place at the data base level and can be costly. Can overload single DB servers and slow performance for all user.

SELECT * FROM BSEG

 WHERE BUKRS = BSIK-BUKRS

 AND REBZG = BSIK-BELNR.

CHECK BSEG-SHKZG = ‘S’.

CHECK BSEG-KOART = ‘K’.

==>
Works more efficiently for cluster tables, especially in multiple application server environments.

Also note the ordering of the WHERE statements to match how the keys are arranged in the table records. This is, usually, minor in performance gain, but takes no effort during programming, and if a lot of programs are running, can add up to a useful saving of resources.

5.4.5 Matching field attributes in the SELECT WHERE clause

Fields that are compared in SELECT statements should have similar attributes. If they don’t the system will have to convert the data every time a comparison is made. When you can’t match data fields via table definitions, then you should move the data to a temporary field in your program before doing the compare (if you will be using the same field for several comparisons).

Example

SELECT * FROM ZZLT2

 WHERE RLDNR = LDGR

 AND RRCTY = ‘0’

 AND RVERS = ‘001’

 AND RYEAR = YEAR.

SELECT * FROM ZZLS2

 WHERE RLDNR = ZZLT2-RLDNR

 AND RRCTY = ZZLT2-RRCTY

 AND BUKRS = ZZLT2-BUKRS.

SELECT * FROM BSEG

 WHERE BUKRS = ZZLS2-BUKRS

 AND BELNR = ZZLS2-DOCNR

 AND GJAHR = ZZLS2-RYEAR

 AND BUZEI = ZZLS2-DOCLN.

==> Compares a NUMC 3 to a CHAR 3 field. Since this SELECT will be cycled through several times in this nesting structure, it would be more efficient to move the data field before processing the looping SELECT.

DATA: ZZ_TEMP_DOCLN LIKE BESG-BUZEI.

. . .

SELECT * FROM ZZLT2

 WHERE RLDNR = LDGR

 AND RRCTY = ‘0’

 AND RVERS = ‘001’

 AND RYEAR = YEAR.

SELECT * FROM ZZLS2

 WHERE RLDNR = ZZLT2-RLDNR

 AND RRCTY = ZZLT2-RRCTY

 AND BUKRS = ZZLT2-BUKRS.

MOVE ZZLS2-DOCLN TO ZZ_TEMP_DOCLN.

SELECT * FROM BSEG

 WHERE BUKRS = ZZLS2-BUKRS

 AND BELNR = ZZLS2-DOCNR

 AND GJAHR = ZZLS2-RYEAR

 AND BUZEI = ZZ_TEMP_DOCLN.

NOTE: Your comparison may still fail in both examples due to the conversion of alpha-numeric characters to numeric. Data comparisons are accomplished at the hexadecimal level and some values, characters, or signed values may not convert as you anticipate. You must check SY-SUBRC in these examples and/or find other ways to verify that your record selection was successful. Results are unpredictable with data conversion.

5.4.6 Processing Internal Tables and Data Areas.

When dealing with a table, if possible, process the table completely before performing SORTs, SELECTs, READs, etc. with other tables.

Example

Several internal tables have been created to store totals for output to a report. They are STOCKS, PROCUREMENT, ABC, HIERARCHY, and GROUPS. During processing of other data these tables have been generated and are ready for sorting and output to a report.

SORT STOCKS BY STOCKOBJ.

SORT PROCUREMENT BY PROCOBJ.

SORT ABC BY ABCOBJ.

SORT HIERARCHY BY HIEROBJ.

SORT GROUPS BY GRPOBJ.

...

LOOP AT STOCKS.

READ TABLE STOCKS...

WRITE....

SUMTOT = SUMTOT + STOCKS-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

LOOP AT PROCUREMENT.

READ TABLE PROCUREMENT...

WRITE....

SUMTOT = SUMTOT + PROCUREMENT-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

LOOP AT ABC.

READ TABLE ABC...

WRITE....

SUMTOT = SUMTOT + ABC-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

LOOP AT HIERARCHY.

READ TABLE HIERARCHY...

WRITE....

SUMTOT = SUMTOT + HIERARCHY-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

LOOP AT GROUPS.

READ TABLE GROUPS...

WRITE....

SUMTOT = SUMTOT + GROUPS-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

==> Will work, but will need more memory & resources to hold all of the sorted tables simultaneously until they are used. This will usually cause paging of data / memory.

SORT STOCKS BY STOCKOBJ.

...

LOOP AT STOCKS.

READ TABLE STOCKS...

WRITE....

SUMTOT = SUMTOT + STOCKS-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

SORT PROCUREMENT BY PROCOBJ.

LOOP AT PROCUREMENT.

READ TABLE PROCUREMENT...

WRITE....

SUMTOT = SUMTOT + PROCUREMENT-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

SORT ABC BY ABCOBJ.

LOOP AT ABC.

READ TABLE ABC...

WRITE....

SUMTOT = SUMTOT + ABC-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

SORT HIERARCHY BY HIEROBJ.

LOOP AT HIERARCHY.

READ TABLE HIERARCHY...

WRITE....

SUMTOT = SUMTOT + HIERARCHY-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

SORT GROUPS BY GRPOBJ.

LOOP AT GROUPS.

READ TABLE GROUPS...

WRITE....

SUMTOT = SUMTOT + GROUPS-VALUE.

ENDLOOP.

WRITE: / ‘TOTAL:’ SUMTOT.

==> Will use less memory & resources by allowing the system to fill memory with only the data immediately needed and releasing the sorted table spaces from memory when processing is completed.

For tables that are used repeatedly and/or by several programs, consider creating data structures in the Data Dictionary (and accessed via TABLES statement), instead of within the individual programs (via the DATA - ENDDATA statements). The following situations may benefit from use of an internal table via the Data Dictionary:

- the internal table is large

- the table is accessed in the same way every time and can be set up via Data Dictionary in a “pre-sorted” order

- the same internal table is used in several programs and the structure might change over time

- the program is processing several internal tables at the same time (and therefore will need lots of memory)

- memory usage is of big concern for the particular program being optimized.

Use the FREE statement to release the memory allocated to internal tables. The FREE statement should follow the last statement used to process the data in the table. Be sure the table is not called upon later in the program or by a sub-routine. Use the FREE statement if:

- the internal table is large

- the internal table is sorted and re-processed several times

- the program is processing several internal tables (and therefore will need lots of memory)

- memory usage is of big concern for the particular program being optimized.

An unqualified LOOP AT ... WHERE is preferable to a ‘LOOP AT ... CHECK ... ENDLOOP.’ construction since you will always be reducing the number of statements to be interpreted.

5.4.7 Processing large tables.

When dealing with a large table, you should process as much information as possible on your first pass through the data and, if possible, eliminate any other pass through the table. Sometimes this requires the use of internal tables or data fields to store summary totals, etc. You must evaluate each situation to determine whether it makes sense to store this data and pass through it separately or make another pass through the original table. Factors to consider are:

- How large is the original table versus the sub-set that would be stored as an internal table?

- How much storage space would be required to store the data in an internal table?

If processing only needs to take place once (e.g.- store a field for comparison in a data field), be sure this action takes place outside of any looping structure (SELECT, LOOP, DO, etc.) so that the processing does not repeat unnecessarily.

5.4.8 General Tips:

The IN operator is very expensive in terms of machine time and should not be used in place of an individual EQ operator.

Logical expressions are evaluated from left to right. The evaluation is ended when the final result has been established (elimination or complete inclusion). Therefore, when using the AND or OR operator (in IF, WHERE, etc.), the most likely elimination criterion should be specified first. The opposite will be true for negative comparisons and some OR conditions.

Example

The following table is to be read with printing of employees from ABC company in Georgia:

EMPLOYEE#
NAME

COMPANY

STATE
001

Doe, J.

ABC

TX

002

Doe, M.
ABC

OK

003

Jones, A.
XYZ

TX

004

Jones, B.
ABC

GA

005

Jones, C.
ABC

TX

006

Jones, D.
XYZ

GA

007

Jones, E.
ABC

TX

008

Smith, A.
ABC

GA

009

Smith, B.
ABC

TX

010

Smith, C.
ABC

OK

IF COMPANY = ‘ABC’ AND

 STATE = ‘GA’

WRITE ...

ENDIF.

=

=>
Will work, but will need to evaluate both the company and state fields for eight of ten records.

IF STATE = ‘GA’ AND

 COMPANY = ‘ABC’

WRITE...

ENDIF.

==>Will need less time to process, since it can eliminate all records without STATE = ‘GA’ and therefore will need to evaluate both
company and state for only 3 records.

Calling a subroutine without parameters requires minimal extra CPU time. The more parameters you pass, the more CPU time a subroutine call requires. Passing by reference requires less CPU time than passing by value. The amount of CPU time required to pass a single parameter by value is dependent on the size (e.g.-field length) of the parameter.

Calling a dialog module may require considerable CPU time if large table work areas or internal tables are to be passed.

5.5 SECONDARY INDEXES

5.5.1 Always ensure your index is being used:

A well defined and properly implemented index is one of the best performance and tuning tools available. However, because of the diversity of various database systems, and in particular various database optimizers, it is not possible to lay down any hard and fast rules for creating and using database indexes. Additionally, it is impossible to guarantee the data base optimizers will use your index. Therefore, always check to ensure the proper index is being used.

1. Use the SQL trace transaction ST05 to turn the trace on and off.

2. Click TRACE ON.

3. Execute the transaction in question via a separate session.

4. Return to ST05 and click TRACE OFF.

5. Click LIST TRACE to view the results of your trace.
6. Click on the PREPARE, OPEN or REOPEN statement to select the SQL statement for evaluation.
7. Click EXPLAIN to obtain the results of the SQL statement and optimizer actions.
5.5.2 General Rules for creating and using secondary indexes:

An index supports data searches in the database. All SAP tables have a primary index, which consists of the key fields that the user defines when creating a custom table. For SELECTs in which the primary index cannot be used in the WHERE clause, or when SELECTs are not properly qualified, the data base searches the entire table (performs a full table scan).
Indexes should, generally, only be created with less than five fields.

The most unique / selective fields should come first in the index definition, unless you can match the generic keys of the primary index for the table (e.g.-MANDT, BUKRS).

In general, if a condition includes OR, the optimizer stops processing (and invokes a full table scan) as soon as the first OR is encountered. The possible exception is an OR that proposes a separate and unique condition for evaluation.

Example

ZTABLE is defined with a secondary index:

Field name
Type
Length
FIELDC
CHAR 3

FIELDF
CHAR
 2

SELECT * FROM ZTABLE

WHERE FIELDC = 'ABC'

AND (FIELDF = '12' OR '13').

 =>
Will execute, but will not use the index as expected.

SELECT * FROM ZTABLE

WHERE (FIELDC = 'ABC' AND FIELDF = '12')

OR
 (FIELDC = 'ABC' AND FIELDF = '13)

 =>
Will execute using the index as expected.

IN clauses are often interpreted as OR conditions and may lead to the same problems.

Indexes will not be used for IS (NOT) NULL conditions.

Most optimizers have problems with OR, NEQ and LIKE conditions.

A field in an index is only valid for use if all fields that precede it in the index definition are fully qualified.

Example

ZTABLE is defined with a secondary index:

Field name
Type
Length

FIELDA
CHAR 3

FIELDB
CHAR
 3

FIELDC
CHAR
 2
FIELDD
CHAR
 4

SELECT * FROM ZTABLE

WHERE
FIELDA = 'ABC'

AND

FIELDB = 'XYZ'

AND
FIELDC = '12'.

=>
Will work fine.

SELECT * FROM ZTABLE

WHERE FIELDA = 'ABC'

AND FIELDB = 'XYZ'

AND FIELDD = 'DEFG'.

=>
Will not use the index as expected and will probably invoke a full table scan based on the primary index.
5.5.3 When to Create an Index

1. Non-key fields or fields for which index support does not currently exist are repeatedly used to make selections.

2. Only a small part of a large table is selected (<5%).

3. The WHERE-condition of the SELECT is simple.

4. Fields which make up the index significantly reduce the selection set of the records by matching the unique qualifiers in your WHERE clause.

5.5.4 When Not to Create an Index:

1. If the data redundancy of storing the index creates problems due to the size of the table / index.

2. If constant updates create excessive overhead / lost performance while updating the index.

3. Maintenance of the index (reorganizing, etc.) outweighs the benefits.

4. Using fields whose value for most records in the table is an initial value or has a value that is identical in most records.

5.6 Controlling the Development Environment

5.6.1 Quality Assurance

Development quality assurance activities start with the technical designers review of the functional design and continue throughout the life of the development to its production implementation and hand-over to production support.

The full scope of the QA activities is detailed in the Development Quality Assurance document.

5.6.2 CROSS-REFERENCING A PROGRAM

To help you get an outline on extensive programs, the Program Reference List function can create several types of cross references. When you use this function (by selecting Utilities ->Development/test -> Program Ref. List), the reference list screen appears.

Here you can select the type of cross reference you want.

If you set the Expand INCLUDE lines field, INCLUDE program code is cross-referenced along with the code for the main program. In addition, the display of program code contains the text of INCLUDE programs inline.

Most cross references list the places (report name and line number) where a certain statement type or variable reference occurs.

A table of contents is also generated for the output as a whole. This lists the cross

references created and their page numbers. This table of contents always appears at the very end (last page) of the list.

INCLUDE Reference Lists

The INCLUDE reference list shows all INCLUDE members copied into your program, and the line where the INCLUDE statement occurs.

MODULE Reference Lists

The Module reference list shows the program in which a module is coded and the line in which the module starts.

FORM/PERFORM Reference Lists

The FORM/PERFORM reference list tells all the places (program and line number) where a subroutine is defined. After each entry, program lines are listed where the subroutine is actually called.

CALL FUNCTION Reference Lists

The Call Function reference list tells all the places in the report (program and line number) where a function module is called.

CALL DIALOG Reference Lists

The Call Dialog reference list tells all the places in the report (program and line number) where a dialog module is called.

SELECT Reference Lists

The Select reference list tells all the places in the report (program and line number) where data base or table records are selected.

READ TABLE Reference Lists

The READ TABLE reference list tells all the places in the report (program and line number) where a data base or table record is read.

LOOP AT Reference Lists

The LOOP AT reference list tells the names of all tables processed by LOOP AT statements. Program name and line number give the location.

MODIFY Reference Lists

The MODIFY reference list tells all the places in the report (program and line number) where a data base or table record is modified.

DELETE Reference Lists

The DELETE reference list tells all the places in the report (program and line number) where a data base or table record is deleted.

MESSAGE Reference Lists

The MESSAGE reference list shows all the messages sent in the program. It also tells you the parameters sent with the message.

SCREEN Reference Lists

The SCREEN reference list contains the names of all screens set in the report and where (program and line number) they are set.

PF-status Reference Lists

The PF-status reference list tells you which function key statuses are set in a program.

SET/GET PARAMETER Reference Lists

The SET/GET Parameter reference list tells you which SPA/GPA parameters have been used in the report, and where.

Field Reference Lists

With the Reference list for field option, you create a list of places (program name and line number) that reference a given field.

5.7 Developer’s Issues for the Transport System

The Transport System should not be used for data transfer except Configuration Tables. Data can be transported but is exempt from overwrite protection in Transport system. The tables must total less than 50,000 entries to guarantee success (depends on main memory).

Original objects can disappear or get lost in the transport system if you export an object with control authority and do not successfully import on the target system.

You cannot overwrite, add to, or delete the original copy of an object or an object that is system specific or under repair.

A Private Object is exempt from the transport system but can be transported. Used for objects that are being developed and possibly unit tested, but don’t need to have restricted access or version control. Can be placed under corrections control when development work has stabilized. Can be transported to another development system and placed under control once it is imported on the target system.

A Local Private Object is exempt from the transport system and cannot be ransported. Used for objects that will be used once and thrown away. Used for early development work that has not been assigned a name/number/development class.

You can Lock objects prior to use via corrections to protect a group of objects you will be working with.

If you lock an object that is part of a development object, the system attempts to lock all other related objects. The system will list objects unsuccessfully locked.

You can Protect an object so that others may not Link corrections to it.

If you Link corrections, you must transport them together. In order to do this all of the corrections must all be released prior to transporting.

Development Class is a collection of environment objects that are dependent upon one another (e.g.- SD objects). If you don’t require segregation of objects, you may place all CTS objects in one Development Class (e.g.-Z01).

The Development Class specifies the consolidation and integration system for that environment.

You must match Development Classes in source and target systems, when attempting a transport.

The Environment Analyzer can generate the list of objects that belong to a Development Class.

5.8 Transport Checklist for Developer

Have all the objects in this change request been tested?

Do you need to change other instances to ensure consistency (development, test, production, training)?

Do you have all the proper sign-offs and approvals?

For extensive changes to objects or data, do you need to have the system backups run before and/or after your transport is processed?
If you make structural changes to a table (field names, indexes, keys, data elements, domains, text descriptions, check tables), you may affect:

- programs that read or update these tables

- programs that build internal tables, data fields, reports, or screens

- programs that call or are called by programs with tables being modified

- Dynpros/screens/menus

- matchcodes

- configurations generated

- logical data base structures or views

- pools/clusters

- interfaces to non-SAP systems

- all existing user data in the tables.

If you are changing table structures remember, the following objects may affect other tables:

- data elements,

- domains

- foreign keys

- matchcodes

- views

- logical data structures

- pools/clusters.

If you make changes to user data stored in a table, you may affect:

- programs with literals looking for specific data (IF, SELECT, CASE, WHERE, etc.)

- matchcodes

- configurations

- performance of programs with generic SELECT (e.g.- a select that qualifies only 1 of 2 key fields)

- performance of this, or other , systems based on file/buffer sizes that may now be exceeded).

If you make changes to ABAP programs, remember to consider:

- source code

- variants

- attributes (especially logical data bases)

- documentation

- text elements

- screens/menus/Dynpros

- is the program an include module for other objects?

- does this program call other modules?

- were authority checks added or changed that will affect users?

- were changes made just for testing (code commented out, debug statements added, etc.)?

- predecessor / successor jobs or job steps.

If you make changes to Dynpro objects, remember to consider:

· screen painter

· full-screen editor

· dictionary fields

· field lists

· screen attributes

· flow logic

· ABAP modules executed

· menu painter

· status

· status lists

· list of menu bars

· menu texts of interfaces

· function key settings

· function texts of interfaces

· titles

Appendix B: Metrics-Driven Code Comparisons

The following document provides detailed and timed comparisons of different coding methods. ABAP coding methods are categorized into the following categories:

SQL Interface

String Manipulation

Internal Tables

Internal Tables

Data Typing

Field Conversion

This information can be reviewed online in SAP from the transaction SE30 >> Tips and Tricks.

5.9 SQL Interface

5.9.1 Select … Where vs. Select + Check

	Select + Check statement
	Select with Where condition

	SELECT * FROM VERI_CLNT.

 CHECK: VERI_CLNT-ARG1 = ‘7’.

ENDSELECT.

	SELECT * FROM VERI_CLNT

 WHERE ARG1 = ‘7’

ENDSELECT.

	88,234 microsec
	4,907 microsec

· Always specify your conditions in the Where-clause instead of checking them yourself with check-statements

· The database can then use an index (if possible) and the network load is considerable less

5.9.2 Select single vs. Select-Endselect

	SELECT … ENDSELECT
	SELECT SINGLE * …

	SELECT * FROM VERI_CLNT.

 WHERE ARG1 = ‘7’

 AND ARG2 = ‘ ‘.

ENDSELECT.

	SELECT SINGLE * FROM VERI_CLNT

 WHERE ARG1 = ‘7’

 AND ARG2 = ‘ ‘.

	4,549 microsec
	4,160 microsec

· If you are interested in exactly one row of a database table or view, use the SELECT SINGLE statement instead of a SELECT-ENDSELECT loop.

· SELECT SINGLE requires 1 communication (I/O) with the database system, whereas SELECT-ENDSELECT needs 2.

5.9.3 Select aggregates

	Select … Where + Check
	Select using an aggregate function

	C4A = ‘000’.

SELECT * FROM T100

 WHERE SPRSL = ‘00’.

 CHECK: T100-MSGNR > C4A.

 C4A = T100-MSGNR.

ENDSELECT.

	SELECT MAX(MSGNR) FROM T100 INTO C4A

 WHERE SPRSL = ‘D’

 AND ARBGB = ‘00’.

	221,213 microsec
	24,470 microsec

· If you want to find the maximum, minimum, sum and average value or the count of a database column, use a select list with aggregate functions instead of computing the aggregates yourself. Network load is considerably less.

5.9.4 Select with view

	Nested Select statements
	Select with view

	SELECT * FROM DD01L

 WHERE DOMNAME LIKE ‘CHAR%’

 AND AS4LOCAL = ‘A’.

 SELECT SINGLE * FROM DD01T

 WHERE DOMNAME - DD01L-DOMNAME

 AND AS4LOCAL = ‘A’

 AND AS4VERS = DD01L-AS4VERS

 AND DDLANGUAGE = SY-LANGU.

ENDSELECT.

	SELECT * FROM DD01V

 WHERE DOMNAME LIKE ‘CHAR%’

 AND DDLANGUAGE = SY-LANGU.

ENDSELECT.

	1,472,996 microsec
	308,670 microsec

· To process a join, use a view instead of nested Select statements.

5.9.5 Select with buffer support

	Select without buffer support
	Select with buffer support

	SELECT SINGLE * FROM T100

 BYPASSING BUFFER

WHERE SPRSL = ‘D’

 AND ARBGB = ‘00’

 AND MSGNR = ‘999’.

	SELECT SINGLE * FROM T100

 WHERE SPRSL = ‘D’

 AND ARBGB = ‘00’

 AND MSGNR = ‘999’.

	4,395 microsec
	242 microsec

· For all frequently used, read-only tables, try to use SAP buffering.

5.9.6 Column Update

	Single line update
	Column Update

	SELECT * FROM VERI_CLNT

 VERI_CLNT-FUNCTINT =

 VERI_CLNT-FUNCTINT + 1.

 UPDATE VERI_CLNT.

ENDSELECT.

	UPDATE VERI_CLNT

 SET FUNCTINT = FUNCTINT + 1.

	545,008 microsec
	70,487 microsec

· Whenever possible, use column updates instead of single-row updates to update your database tables.

5.9.7 Select with index support

	Select without index support
	Select with primary index support

	SELECT * FROM T100

 WHERE ARBGB = ‘00’

 AND MSGNR = ‘999’.

ENDSELECT.

	SELECT * FROM T002.

 SELECT * FROM T100

 WHERE SPRSL = T002-SPRAS

 AND ARBGB = ‘00’

 AND MSGNR = ‘999’.

 ENDSELECT.

ENDSELECT.

	3,749,142 microsec
	121,096 microsec

· For all frequently used Select statements, try to use an index. You always use an index if you specify (a generic part of) the index fields concatenated with logical ANDs in the Select statement’s WHERE clause. Note that complex WHERE clauses are poison for the statement optimizer in any database system.

5.9.8 Select … Into Table t

	Select + Append statement
	Select Into Table

	REFRESH X006.

SELECT * FROM T006 INTO X006.

 APPEND X006.

ENDSELECT.

	SELECT * FROM T006

 INTO TABLE X006.

	2,246 microsec
	829 microsec

· It is always faster to use the INTO TABLE version of a SELECT statement than to use APPEND statements.

5.9.9 Select-Endselect vs. Array-Select

	Select … Endselect
	Select Into Table t … Loop at t

	SELECT * FROM T006.

ENDSELECT.

	SELECT * FROM T006

 INTO TABLE I_T006.

 LOOP AT TABLE I_T006.

 ENDLOOP.

ENDSELECT.

	2,022 microsec
	1,117 microsec

· If you process your data only once and memory is more a concern than performance, use a SELECT-ENDSELECT loop instead of collecting data in an internal table with SELECT INTO TABLE and then LOOPing through the internal table.

5.9.10 Select with select list

	Select *
	Select with select list

	SELECT * FROM DD01L

 WHERE DOMNAME LIKE 'CHAR%'

 AND AS4LOCAL = 'A'.

ENDSELECT.

	SELECT DOMNAME FROM DD01L

 INTO DD01L-DOMNAME

 WHERE DOMNAME LIKE 'CHAR%'

 AND AS4LOCAL = 'A'.

ENDSELECT.

	240,062 microsec
	89,276 microsec

· Use a select list or a view instead of a SELECT *, if you are only interested in specific columns of the table.

5.9.11 Array Insert vs. Single-row Insert

	Single line insert
	Array insert

	* Table TAB is filled with 100 entries

LOOP AT TAB.

INSERT INTO VERI_CLNT VALUES TAB.

ENDLOOP.

	* Table TAB is filled with 100 entries

INSERT VERI_CLNT FROM TABLE TAB.

	463,581 microsec
	53,917 microsec

· Whenever possible, use array operations instead of single row operations to modify the database tables.

· Frequent communication between the application program and the database system produces considerable overhead.

5.10 String Manipulation

5.10.1 Special operators in IF (CA, …)

	Do-Loop with Field-Symbols
	Using the CA operator

	ASSIGN CHA(1) TO <C>.

 DO 200 TIMES.

 IF <C> = '(' OR <C> = ')'.

 "...any actions

 EXIT.

 ENDIF.

 ASSIGN <C>+1 TO <C>.

ENDDO.

	 IF CHA(200) CA '()'.

 "...any actions

ENDIF.

	 1,263 microsec
	 443 microsec

· Use special operators CO, CA, CS instead of programming the operations yourself.

· If ABAPs statements are executed per character on long strings, CPU consumption can rise substantially.

5.10.2 String concatenation II

	Moving with offset
	Use of the CONCATENATE statement

	 " MOVE 'Jane' TO CMA.

" MOVE 'Miller' TO CMB.

" MOVE 'New York City' TO CMC.

I1 = STRLEN(CMA). I2 = STRLEN(CMB).

MOVE 'Mrs. ' TO CHA.

MOVE CMA TO CHA+5. I1 = I1 + 6.

MOVE CMB TO CHA+I1. I1 = I1 + I2 + 1.

MOVE 'from ' TO CHA+I1. I1 = I1 + 5.

MOVE CMC TO CHA+I1.

"Mrs. Jane Miller from New York City" is the final value of CHA.

	 " MOVE 'Jane' TO CMA.

" MOVE 'Miller' TO CMB.

" MOVE 'New York City' TO CMC.

CONCATENATE

'Mrs.' CMA CMB 'from' CMC INTO CHA

SEPARATED BY SPACE.

"Mrs. Jane Miller from New York City" is the final value of CHA.

	93 microsec
	28 microsec

· Use the CONCATENATE statement instead of programming a string concatenation.

5.10.3 Deleting leading spaces

	Shifting by SY-FDPOS places
	Using SHIFT … LEFT DELETING LEADING …

	" CLA contains the string

 " ' "Editor line n'.

IF CLA CN SPACE. ENDIF.

SHIFT CLA BY SY-FDPOS PLACES LEFT.

	" CLA contains the string

 " ' "Editor line n'.

SHIFT CLA LEFT DELETING LEADING SPACE.

	 100 microsec
	 8 microsec

· If you want to delete leading spaces in a string, use the ABAP statement SHIFT … LEFT DELETING LEADING …

· Other construction are not as fast:

· with CN and SHIFT … BY SY-FDPOS PLACES, with CONDENSE is possible,

· with CN and ASSIGN CLA+SY-FDPOS(LEN) …

· In any case, avoid using SHIFT inside a WHILE loop!

5.10.4 String concatenation

	Use of a CONCATENATE function module
	Use of the CONCATENATE statement

	CALL FUNCTION 'STRING_CONCATENATE_3'

 EXPORTING

 STRING1 = T100-ARBGB

 STRING2 = T100-MSGNR

 STRING3 = T100-TEXT

 IMPORTING

 STRING = CLA

 EXCEPTIONS

 TOO_SMALL = 01.

	 CONCATENATE T100-ARBGB

 T100-MSGNR

 T100-TEXT INTO CLA.

	 194 microsec
	 14 microsec

· Some function module for string manipulation have become obsolete and should be replaced by an ABAP statement or functions:

· STRING_CONCATENATE

(
CONCATENATE

· STRING_SPLIT

(
SPLIT
· STRING_LENGTH

(
STRLEN()
· STRING_CENTERED

(
WRITE … TO … CENTERED
· STRING_MOVE_RIGHT

(
WRITE … TO … RIGHT-JUSTIFIED
5.10.5 String split

	Use of SEARCH and MOVE with offset
	Use of the SPLIT statement

	*CMA contains '(410)-45174-66354312' and shall be split into AREA_CODE, TEL_NO1, TEL_NO2.

SEARCH CMA FOR '-'.

MOVE CMA(SY-FDPOS) TO AREA_CODE.

I1 = SY-FDPOS + 2.

SEARCH CMA FOR '-' STARTING AT I1.

I1 = I1 - 1.

MOVE CMA+I1(SY-FDPOS) TO TEL_NO1.

I1 = I1 + SY-FDPOS + 1.

MOVE CMA+I1 TO TEL_NO2.

	 *CMA contains '(410)-45174-66354312' and shall be split into AREA_CODE, TEL_NO1, TEL_NO2

SPLIT CMA AT '-' INTO AREA_CODE

 TEL_NO1

 TEL_NO2.

	66 microsec
	 11 microsec

· Use the SPLIT statement instead of programming a string split.

5.10.6 String length

	Get a CHECK_SUM with field length
	Get a CHECK_SUM with strlen()

	*DATA: BEGIN OF STR, LINE TYPE X, END OF STR, CHECK_SUM TYPE I.

"MOVE 'KALEBVPQDSCFG' TO CLA.

DO 64 TIMES VARYING STR FROM CLA NEXT CLA+1.

 CHECK STR NE SPACE.

 ADD STR-LINE TO CHECK_SUM.

ENDDO.

	 *DATA: BEGIN OF STR, LINE TYPE X, END OF STR, CHECK_SUM TYPE I.

"MOVE 'KALEBVPQDSCFG' TO CLA.

I1 = STRLEN(CLA).

DO I1 TIMES VARYING STR FROM CLA NEXT CLA+1.

 CHECK STR NE SPACE.

 ADD STR-LINE TO CHECK_SUM.

ENDDO.

	597 microsec
	171 microsec

· Use the STRLEN() function to restrict the DO loop to the relevant part of the field, e.g. when determining a CHECK_SUM.

5.11 Internal Tables

5.11.1 Building sorted tables

	 One-step Approach: READ/INSERT
	Two-step Approach: APPEND, then SORT

	* TAB_DEST is filled with 1000 entries

REFRESH TAB_DEST.

LOOP AT TAB_SRC.

 READ TABLE TAB_DEST WITH KEY

 K = TAB_SRC-K BINARY SEARCH.

 INSERT TAB_SRC INTO TAB_DEST

 INDEX SY-TABIX.

ENDLOOP.

	* TAB_DEST is filled with 1000 entries

REFRESH TAB_DEST.

LOOP AT TAB_SRC.

 APPEND TAB_SRC TO TAB_DEST.

ENDLOOP.

SORT TAB_DEST BY K.

	98,545 microsec
	20,693 microsec

· If the amount of data is small, (< 20 entries),or if you need read access to the internal table while it is being filled, the one-step approach using READ/INSERT is the right choice.

· If, however, the data amount is larger and you need read-access only to the completely filled table, the two-step process is preferable.

5.11.2 Building tables without duplicates

	One-step approach
	Three-step: COPY, SORT, DELETE DUPs

	* TAB_SRC contains 1000 entries, of which 500 are different

REFRESH TAB_DEST.

LOOP AT TAB_SRC.

 READ TABLE TAB_DEST WITH KEY

 K = TAB_SRC-K BINARY SEARCH.

 IF SY-SUBRC <> 0.

 INSERT TAB_SRC INTO TAB_DEST

 INDEX SY-TABIX.

 ENDIF.

ENDLOOP.

	* TAB_SRC contains 1000 entries, of which 500 are different

REFRESH TAB_DEST.

LOOP AT TAB_SRC.

 APPEND TAB_SRC TO TAB_DEST.

ENDLOOP.

SORT TAB_DEST BY K.

DELETE ADJACENT DUPLICATES

 FROM TAB_DEST COMPARING K.

	43,469 Microsec
	26,259 microsec

· If the amount of data is small, (< 20 entries),or if you need read access to the internal table while it is being filled, the one-step approach using READ/INSERT is the right choice.

· If, however, the data amount is larger and you need read-access only to the completely filled table, the three-step process is preferable.

5.11.3 Different forms of key access

	Access via implicit default keys
	Access via key specified explicitly

	* Table TAB is filled with 30 entries of 500 bytes each

* The READ ends with SY-SUBRC=4

MOVE SPACE TO TAB.

TAB-K = 'X'.

READ TABLE TAB BINARY SEARCH.

	* Table TAB is filled with 30 entries of 500 bytes each

* The READ ends with SY-SUBRC=4

READ TABLE TAB WITH KEY

 K = 'X' BINARY SEARCH.

	37 microsec
	15 microsec

· If possible, specify the key fields for read access explicitly. Otherwise, the key fields have to be computed dynamically by the runtime system.

5.11.4 Key access to multiple lines

	Key access with LOOP/CHECK
	Key access with LOOP … WHERE

	* Table TAB is filled with 100 entries of 500 bytes each, 5 entries of which match the key condition

LOOP AT TAB.

 CHECK TAB-K = KVAL.

 " ...

ENDLOOP.

	* Table TAB is filled with 100 entries of 500 bytes each, 5 entries of which match the key condition

LOOP AT TAB WHERE K = KVAL.

 " ...

ENDLOOP.

	1,395 microsec
	387 microsec

· LOOP … WHERE is faster than LOOP/CHECK because LOOP … WHERE evaluates the specified condition internally.

· As with any logical expressions, the performance is better if the operands of a comparison share a common type.

· The performance can be further enhanced if the LOOP … WHERE is combined with FROM i1and/or TO i2, if possible.

5.11.5 Copying internal tables

	Pedestrian way to copy internal table
	

	* Table TAB_SRC is filled with 100 entries of 100 Bytes each.

REFRESH TAB_DEST.

LOOP AT TAB_SRC INTO TAB_DEST.

 APPEND TAB_DEST.

ENDLOOP.

	* Table TAB_SRC is filled with 100 entries of 100 Bytes each.

TAB_DEST[] = TAB_SRC[].

	949 microsec
	314 microsec

· Internal table can be copied by move just like any other data object. If the internal table itab has a header line, the table is accessed by itab[]

5.11.6 Sorting internal tables

	SORT itab with default sort key
	SORT itab with specified sort key

	* Table TAB is filled with 100 entries of 500 bytes each

SORT TAB.

	* Table TAB is filled with 100 entries of 500 bytes each

SORT TAB BY K.

	2,026 microsec
	821 microsec

· The more sort key you specify the faster the program will run.

5.11.7 Nested loops

	Straightforward nested loop
	Parallel cursor loop

	* Table TAB1 is filled with 100 entries of 100 bytes each

* Table TAB2 is filled with 10 * 100 = 1000 entries of 100 bytes each

LOOP AT TAB1.

 LOOP AT TAB2 WHERE K = TAB1-K.

 " ...

 ENDLOOP.

ENDLOOP.

	* Table TAB1 is filled with 100 entries of 100 bytes each

* Table TAB2 is filled with 10 * 100 = 1000 entries of 100 bytes each

I2 = 1.

LOOP AT TAB1.

 LOOP AT TAB2 FROM I2.

 IF TAB2-K <> TAB1-K.

 I2 = SY-TABIX.

 EXIT.

 ENDIF.

 " ...

 ENDLOOP.

ENDLOOP.

	394,175 microsec
	10,029 microsec

· If TAB1 has n1 entries and TAB2 has n2 entries, the time needed for the nested loop with the straight forward algorithm is O(n1 * n2), whereas the parallel cursor approach takes only O(n1 + n2) time. The above parallel cursor algorithm assume that TAB2 contain only entries that are also contained in TAB1.

· If this assumption is not true, the parallel cursor algorithm gets slightly more complicated, but its performance characteristics remain the same.

5.11.8 Deleting a sequence of lines

	Pedestrian way to delete a seq. Of lines
	Let the kernel do the work

	* Table TAB_DEST is filled with 1000 entries of 500 bytes each, and lines 450 to 550 are to be deleted

DO 101 TIMES.

 DELETE TAB_DEST INDEX 450.

ENDDO.

	* Table TAB_DEST is filled with 1000 entries of 500 bytes each, and lines 450 to 550 are to be deleted

DELETE TAB_DEST FROM 450 TO 550.

	3,119 microsec
	128 microsec

· With the new delete variant:

 DELETE itab FROM … TO …

the task of deleteing a sequence of lines can be transferred to the kernel.

5.11.9 Building condensed tables

	COLLECT semantics using READ BINARY
	Collect via COLLECT

	* Table TAB_SRC is filled with 10,000 entries, 5,000 of which have different keys

LOOP AT TAB_SRC.

 READ TABLE TAB_DEST WITH KEY

 K = TAB_SRC-K BINARY SEARCH.

 IF SY-SUBRC = 0.

 ADD: TAB_SRC-VAL1 TO

 TAB_DEST-VAL1,

 TAB_SRC-VAL2 TO

 TAB_DEST-VAL2

 MODIFY TAB_DEST INDEX SY-TABIX.

 ELSE.

 INSERT TAB_SRC INTO TAB_DEST

 INDEX SY-TABIX.

 ENDIF.

ENDLOOP.

	* Table TAB_SRC is filled with 10,000 entries, 5,000 of which have different keys

LOOP AT TAB_SRC.

 COLLECT TAB_SRC INTO TAB_DEST.

ENDLOOP.

SORT TAB_DEST BY K.

	1,580,904 microsec
	284,471 microsec

· If you need the COLLECT semantics, DO use COLLECT!

· READ BINARY runs in O(LOG2(n)) time, and the internal table index must be adjusted with each INSERT.

· COLLECT, however, uses a hash algorithm and is therefore independent of the number of entries i.e. O(1) and does not need to maintain a table index. If you need the final data sorted, sort it after all data has been collected.

· If the amount of data is small, the READ/INSERT approach isn’t bad, but for large amount of data (>1000), COLLECT is much faster.

· CAUTION: when you fill an internal table, do not use COLLECT in combination with any other table filling statements e.g. (APPEND, INSERT, and/or MODIFY). If you mix COLLECT with other statements, COLLECT cannot use its hash algorithm. In this case, COLLECTS resorts to a normal linear search, which is dramatically slower: O(n).

5.11.10 Linear vs. Binary search

	Linear search
	Binary search

	* Table TAB is filled with 1000 entries of 100 bytes each. The READ ends with SY-SUBRC=4

READ TABLE TAB WITH KEY K = 'X'.

	* Table TAB is filled with 1000 entries of 100 bytes each. The READ ends with SY-SUBRC=4

READ TABLE TAB WITH KEY

 K = 'X' BINARY SEARCH.

	1,452 microsec
	29 microsec

· If internal table is assume to have many (>20) entries, a linear search through all entries is very time consuming. Try to keep the table ordered and use binary search.

· If TAB has n entries, linear search runs in O(n) time, whereas binary search takes only O(log2(n)) time.

5.11.11 Secondary indices

	No secondary index (linear search
	Binary search using secondary index

	* Table TAB is filled with 1000 entries. The READ locates the 500th entry.

READ TABLE TAB WITH KEY

 DATE = SY-DATUM.

IF SY-SUBRC = 0.

 ...

ENDIF.

	* Table TAB is filled with 1000 entries. The READ locates the 500th entry.

READ TABLE TAB_INDEX WITH KEY

 DATE = SY-DATUM BINARY SEARCH.

IF SY-SUBRC = 0.

 READ TABLE TAB INDEX

 TAB_INDEX-INDX.

 ...

ENDIF.

	798 microsec
	32 microsec

· If you need to access a table with diferrent keys repeatedly, keep your own secondary indices. With a secondary index, you can replace a linear search with a binary search plus an index access.

5.11.12 Using explicit work areas

	Table operation via header line
	Table operation via explicit workarea

	* The line width of table TAB is 500 bytes

TAB = TAB_WA.

APPEND TAB.

	* The line width of table TAB is 500 bytes

APPEND TAB_WA TO TAB.

	17 microsec
	9 microsec

· Avoid unnecessary MOVEs by using the explicit workarea operations:

· APPEND wa TO tab

· INSERT wa INTO tab

· COLLECT wa INTO tab

· MODIFY tab FROM wa

· READ tab INTO wa

· LOOP AT tab INTO wa where appropriate.

5.11.13 Comparing internal tables

	Pedestrian way to compare internal table
	Let the kernel do the work

	* Tables TAB1 and TAB2 are each filled with 100 entries of 100 Bytes each

DESCRIBE TABLE: TAB1 LINES L1,

TAB2 LINES L2.

IF L1 <> L2.

 TAB_DIFFERENT = 'X'.

ELSE.

 TAB_DIFFERENT = SPACE

 LOOP AT TAB1.

 READ TABLE TAB2 INDEX SY-TABIX.

 IF TAB1 <> TAB2.

 TAB_DIFFERENT = 'X'. EXIT.

 ENDIF.

 ENDLOOP.

ENDIF.

IF TAB_DIFFERENT = SPACE.

" ...

ENDIF.

	* Tables TAB1 and TAB2 are each filled with 100 entries of 100 Bytes each

IF TAB1[] = TAB2[].

" ...

ENDIF.

	1,774 microsec
	535 microsec

· Internal tables can be compared in logical expressions just like other data objects.

· 2 internal tables are equal if

· they have the same number of lines and

· each pair of corresponding line is equal

· If an internal table itab has a header line, the table itself is access by itab[].

5.11.14 Joining internal tables

	Naïve join: loop tab1, read tab2 with key
	parallel cursor

	* Table TAB1 is filled with 1000 entries of 100 bytes each

* Table TAB2 is filled with 300 entries of 100 bytes each

* Table TAB2 is assumed to be sorted by K in ascending order

LOOP AT TAB1.

 READ TABLE TAB2 WITH KEY

 K = TAB1-K BINARY SEARCH.

 IF SY-SUBRC = 0.

 ...

 ENDIF.

ENDLOOP.

	* Table TAB1 is filled with 1000 entries of 100 bytes each

* Table TAB2 is filled with 300 entries of 100 bytes each

* Table TAB2 is assumed to be sorted by K in ascending order

I2 = 1.

LOOP AT TAB1.

READ TABLE TAB2 INDEX I2.

IF SY-SUBRC <> 0. EXIT. ENDIF.

IF TAB2-K = TAB1-K.

" ...

ADD 1 TO I2.

ENDIF.

ENDLOOP.

	28,319 microsec
	9,824 microsec

· If TAB1 has n1 entries and TAB2 has n2 entries, the time needed to join TAB1 and TAB2 with the straight forward algorithm is O(n1 * log2(n2)), whereas the parallel cursor approach takes only O(n1 + n2) time.

· The above parallel cursor algorithm assumes that TAB2 is a secondary table containing only entries also contained in primary table TAB1. If this assumption is not true, the parallel cursor algorithm gets slightly more complicated, but its performance characteristics remain the same.

5.11.15 Deleting duplicates

	Pedestrian way to delete duplicate
	Let the kernel do the work

	* Table TAB_DEST is filled with 1000 entries of 100 bytes each and contains 500 pairs of duplicates

READ TABLE TAB_DEST INDEX 1 INTO PREV_LINE.

LOOP AT TAB_DEST FROM 2.

IF TAB_DEST = PREV_LINE.

DELETE TAB_DEST.

ELSE.

PREV_LINE = TAB_DEST.

ENDIF.

ENDLOOP.

	* Table TAB_DEST is filled with 1000 entries of 100 bytes each and contains 500 pairs of duplicates

DELETE ADJACENT DUPLICATES FROM TAB_DEST COMPARING K.

	26,826 microsec
	4,159 microsec

· With the new DELETE variant, DELETE ADJACENT DUPLICATES, the task of deleting duplicate entries can be transferred to the kernel.

5.11.16 Deleting a set of lines

	Pedestrian way to delete a set of lines
	Let the kernel do the work

	* Table TAB_DEST is filled with 1000 entries of 500 bytes each, which match the WHERE condition

LOOP AT TAB_DEST WHERE K = KVAL.

 DELETE TAB_DEST.

ENDLOOP.

	* Table TAB_DEST is filled with 1000 entries of 500 bytes each, which match the WHERE condition

DELETE TAB_DEST WHERE K = KVAL.

	14,491 microsec
	6,496 microsec

· With the new delete variant, DELETE itab [FROM …] [TO …] WHERE … , the task of deleting a set of lines can be transferred to the kernel. If possible, WHERE should be used together with FROM … and/or TO … to enhance performance even more.

· The performance gained when using DELETE itab FROM, instead of LOOP AT itab WHERE … DELETE itab. ENDLOOP.increases with the number of entries the internal table contains and the number of lines to be deleted.

5.12 Typing

5.12.1 Typed vs. Untyped parameters

	Untyped parameters
	Typed parameters

	PERFORM UP1 USING IX M6-DIMID

 M6-ZAEHL M6-ISOCODE M6-ANDEC

 M6-PRIMARY.

FORM UP1 USING

 REPEAT

 DIMID

 ZAEHL

 ISOCODE

 ANDEC

 PRIMARY.

* Identical source code left and right:

DO REPEAT TIMES.

 T006-DIMID = DIMID.

 T006-ZAEHL = ZAEHL.

 T006-ISOCODE = ISOCODE.

 T006-ANDEC = ANDEC.

 T006-PRIMARY = PRIMARY.

 I1 = REPEAT - SY-INDEX.

ENDDO.

ENDFORM.

	PERFORM UP2 USING IX M6-DIMID

 M6-ZAEHL M6-ISOCODE M6-ANDEC

 M6-PRIMARY.

FORM UP2 USING

REPEAT TYPE I

DIMID LIKE T006-DIMID

ZAEHL LIKE T006-ZAEHL

ISOCODE LIKE T006-ISOCODE

ANDEC LIKE T006-ANDEC

PRIMARY LIKE T006-PRIMARY.

* Identical source code left and right:

DO REPEAT TIMES.

 T006-DIMID = DIMID.

 T006-ZAEHL = ZAEHL.

 T006-ISOCODE = ISOCODE.

 T006-ANDEC = ANDEC.

 T006-PRIMARY = PRIMARY.

 I1 = REPEAT - SY-INDEX.

ENDDO.

ENDFORM.

	228 microsec
	 161 microsec

· If you specify the type for formal parameters in your source code, the ABAP compiler can optimise the code more thoroughly. In addition, the risk of using the wrong sequence of parameters in a PERFORM statement is much less.

· If you have large ‘untyped’ programs, use the automatic typing facility of the development workbench.

5.12.2 Typed vs. Untyped field-symbols

	Field-symbols without type
	Typed field-symbols

	FIELD-SYMBOLS: <F>.

ASSIGN I1 TO <F>.

I2 = <F>.

I3 = <F>.

I4 = <F>.

	FIELD-SYMBOLS: <I> type I.

ASSIGN I1 TO <I>.

I2 = <I>.

I3 = <I>.

I4 = <I>.

	 11 microsec
	7 microsec

· If you specify the type of field-symbols and formal parameters in your source code, the ABAP compiler can better optimise the code.

5.13 If, Case, …

5.13.1 If vs. Case

	If
	Case

	IF C1A = 'A'. WRITE '1'.

ELSEIF C1A = 'B'. WRITE '2'.

ELSEIF C1A = 'C'. WRITE '3'.

ELSEIF C1A = 'D'. WRITE '4'.

ELSEIF C1A = 'E'. WRITE '5'.

ELSEIF C1A = 'F'. WRITE '6'.

ELSEIF C1A = 'G'. WRITE '7'.

ELSEIF C1A = 'H'. WRITE '8'.

ENDIF.

	CASE C1A.

 WHEN 'A'. WRITE '1'.

 WHEN 'B'. WRITE '2'.

 WHEN 'C'. WRITE '3'.

 WHEN 'D'. WRITE '4'.

 WHEN 'E'. WRITE '5'.

 WHEN 'F'. WRITE '6'.

 WHEN 'G'. WRITE '7'.

 WHEN 'H'. WRITE '8'.

ENDCASE.

	16 microsec
	 7 microsec

· CASE statements are clearer and a little faster than IF construction.

5.13.2 Case vs. Perform I of …

	Case
	Perform I Of …

	* (I1 = 5 in this test)

CASE I1.

WHEN 1. PERFORM PV1.

WHEN 2. PERFORM PV2.

WHEN 3. PERFORM PV3.

WHEN 4. PERFORM PV4.

WHEN 5. PERFORM PV5.

WHEN 6. PERFORM PV6.

WHEN 7. PERFORM PV7.

WHEN 8. PERFORM PV8.

ENDCASE.

	* (I1 = 5 in this test)

PERFORM I1 OF

 PV1

 PV2

 PV3

 PV4

 PV5

 PV6

 PV7

 PV8.

	11 microec
	6 microsec

· A very fast way to call a certain routine using a give index is to PERFORM I OF … statement.

5.13.3 While vs. Do

	Do
	Case

	I1 = 0.

DO.

 IF C1A NE SPACE. EXIT. ENDIF.

 ADD 1 TO I1.

 IF I1 GT 10. C1A = 'X'. ENDIF.

ENDDO.

	I1 = 0.

WHILE C1A = SPACE.

 ADD 1 TO I1.

 IF I1 GT 10. C1A = 'X'. ENDIF.

ENDWHILE.

	 8 microsec
	 6 microsec

· If you can use WHILE instead of a DO+EXIT construction, then do so. While is easier to understand and faster to execute.

5.14 Field Conversion

5.14.1 Field Types I and P

	Type P
	Type I

	DATA: IP TYPE P.

DO 5 TIMES.

 IP = SY-INDEX * 2.

 READ TABLE X100 INDEX IP.

ENDDO.

	DATA: IP TYPE I.

DO 5 TIMES.

 IP = SY-INDEX * 2.

 READ TABLE X100 INDEX IP.

ENDDO.

	78 microsec
	37 microsec

· Use fields of type I for typical integer variables like indices.

5.14.2 Constants Type F

	Literal type C
	Constant type F

	DATA:

FLOAT TYPE F.

FLOAT = '3.1415926535897932'.

	CONSTANTS:

PI TYPE F VALUE '3.1415926535897932'.

DATA:

FLOAT TYPE F.

FLOAT = PI.

	22 microsec
	1 microsec

· Use correctly typed constants instead of literals

5.14.3 Mixed types

	Several types
	Only 1 type

	DATA: F1 TYPE I VALUE 2,

 F2 TYPE P DECIMALS 2 VALUE '3.14',

 F3 TYPE F.

F3 = F1 * F2.

	DATA: F1 TYPE F VALUE 2,

 F2 TYPE F VALUE '3.14',

 F3 TYPE F.

F3 = F1 * F2.

	 46 microsec
	 1 microsec

· Don’t mix types unless absolutely necessary.

5.14.4 Literals Type C and Type I

	Type C
	Type I

	SY-SUBRC = '0'.

CASE SY-SUBRC.

 WHEN '1'.

 WHEN '2'.

 WHEN '3'.

 WHEN '4'.

ENDCASE.

	SY-SUBRC = '0'.

CASE SY-SUBRC.

 WHEN '1'.

 WHEN '2'.

 WHEN '3'.

 WHEN '4'.

ENDCASE.

	14 microsec
	6 microsec

· use numeric literals or named constants with a number type instead of character strings if you are dealing with type I or integer type P fields.

5.14.5 Arithmetic

	Type N
	Type P

	DATA:

N1(15) TYPE N VALUE '123456789012345',

N2(15) TYPE N VALUE '543210987654321',

N3(15) TYPE N.

N3 = N1 + N2.

	DATA:

P1 TYPE P VALUE '123456789012345',

P2 TYPE P VALUE '543210987654321',

P3 TYPE P.

P3 = P1 + P2.

	29 microsec
	 8 microsec

· use number types for arithmetic

6 Appendix C: Tips and Tricks

6.1 Helpful Hints on Commands:

1. Use the CHECK command instead of an IF statement whenever possible. This reduces processing time and improves readability.

2. Use the ON CHANGE OF command instead of developing code to compare current and previous values of a data field.

3. Use SELECT SINGLE * FROM instead of SELECT * FROM for retrieving a table entry when the full key is known.

4. Use the EXIT command to leave a loop structure as soon as a specified condition is met. This reduces needless loop processing.

5. Use APPEND instead of COLLECT to add entries to an internal table whenever possible. The former command has less overhead.

6. Use the AT command within loop processing whenever possible.

6.2 General Hints:

1. Initialization Event -
This event is executed before the output of the selection screen. The INITIALIZATION section is only performed when the ABAP is started directly, and is not executed if the ABAP is called or executed by another ABAP. This event is also ignored in a batch environment. It is frequently used to calculate special defaults for the selection screen.

2. Table Loop -
Whenever looping on a table, always CLEAR the table header or fill it with a generic key before the LOOP statement.

3. Structured And Modular Programming Techniques
The use of structured and modular programming techniques, along with extensive but reasonable comments, greatly enhances the readability and maintainability of a program.

- Make use of CASE structures in place of extensive nested IF’s

- Use PERFORMS to modularize the ‘mainline’ area of the report

- Replace blocks of code within an extensive IF statement with a PERFORM

- Whenever possible, use the PERFORM command with the USING or CHANGING keywords

6.3 Programming Tips

1. When one uses the MOVE statement, try keep the destination operands as the same data type as the 'from' operands.

2. Use the FREE <table> command once the program has completed using the table. If the program ends on completion of the table processing, this is obviously not required.

3. When defining DATA statements only define variable required throughout the program as global (i.e. at the top of the program). If variables are only required for processing within a FORM, then define the variable within the FORM itself.

4. When using the SORT statement, always specify the sort key. Try keep the key as short as possible.

5. When processing an internal table use the LOOP instead of an SQL select statement. When using the LOOP statement use the LOOP...AT...WHERE instead of a LOOP...AT...CHECK.

6. When the LOOP...AT...WHERE is used ensure the condition variables have been defined with the same data type.

7. Use the BINARY SEARCH, when performing an direct read on an internal table. This only becomes beneficial for tables with more than 500 rows.

8. Use a BINARY SEARCH read and MODIFY instead of COLLECT if the internal table is large (more that 1000 entries)

9. If one performs many INSERTs or DELETEs on a large internal table, EXPORT the table to memory and IMPORT back from memory before looping through the table.

10. Use the CASE statement instead of a nested IF.

Appendix D: Quality ABAP Programming

D. Pan & T. Ress

Preliminary Version

6.4 OVERVIEW

The purpose of this document is to provide ABAP programmers with the necessary information to create performance efficient ABAP code.

6.5 Technical Principle for Program Optimization

Two major areas one needs to address in order to improve an ABAP program performance:

1. Database access

2. ABAP programming analysis

The chronological structure of this note reflects the procedure for tuning and increasing performance.

6.6 Database access:

Tools: SQL trace, EXPLAIN SQL.

6.6.1 Optimization of individual SQL statements

· Optimize WHERE condition

· Use database indexes

See note 1.

6.6.2 No unnecessary access

· Optimize "straight-forward" case

EXIT from select statement as early as possible.

6.6.3 Use SAP buffers

· 100% buffer

· Generic buffer

· Single record buffer

· Consider creating views in database to join tables vs. join them in ABAP

· Use ARRAY insert, delete, update whenever possible. See note 3.

6.6.4 No unnecessary sort operations on the database

6.6.5 Optimize matchcodes

· Consider matchcode update type ‘I’

· Program-controlled matchcodes, type ‘P’

If the ABAP reports will change table entries in the database, there may be some matchcode Ids updates which will slow down the performance.

6.6.6 Minimize DB lock times

· Updates on central tables as close as possible to COMMIT

· Use SAP number ranges

6.6.7 Avoid deadlock situations

· Ensure update sequence

6.7 ABAP Programming

Tools: (ABAP run-time analysis, GET RUN TIME FIELD f, static analysis)

See note 2 & 3 for more information.

6.7.1 Processing internal tables

· If possible, index access or binary search

· Avoid nested loops

· Cancel loop processing

· Instead of frequent sorts, fill table with sorted entries

READ the internal table with BINARY SEARCH, then INSERT with that SY-TABIX.

· Consider OCCURS parameter

6.7.2 Modularization

· Dialog modules

· Function modules

· Subroutines, e.g. FORM

While the above techniques can make your code more readable and modularized, sometimes it will cost more CPU time. See note 3 for more information.

6.7.3 Costly language elements

· Avoid type conversations

· Avoid type P numbers

· Use TYPE I for counter or loop index..

· Avoid dynamic ASSIGNS

· Assign value to table field instead of MOVE-CORRESPONDING.

· Avoid nested loops

6.8 Analysis tools

6.8.1 SQL trace (ST05)

· Logging of all database access search

· Statement and WHERE condition

· Number of table lines transferred

· Elapsed times

6.8.2 Transaction: SDBE

· Database access plan

· DB indexes used

· Access sequence with joins

Use SDBE to test different WHERE conditions, table indexes, & access plan (direct read or sequential search).

6.8.3 ABAP trace analysis: SE30

· Hit lists

· Number of conversions

· Flow trace

· Table access

You can quickly get a general idea of the coding run during the program execution and of its execution time. For the evaluation, hitlists of the top CPU consumers, of the table accesses as well as of the respective program run are available.

6.8.4 Get RUN TIME FIELD f

· Language element for selective run-time measurement of

· specific program sections in microseconds

A very useful feature to tune a particular part of your code.

6.8.5 ABAP cross reference analysis: RSINCL00

· Unused variable

· Unused program parts

· Incorrect interfaces

Report RSINCL00 can analyze an ABAP program and generate some very good information such as unused variable, unused program parts, incorrect interfaces, functions used, ...etc.

6.9 Note I: Optimization of individual SQL statement

Oracle uses following rules to choose an index:

1. unique indexes take precedence over non-unique indexes

2. concatenated indexes take precedence over single column indexes

3. exact searches ("=" and "IN") take precedence over generic searches ("LIKE" and "BETWEEN")

The three rules appear in order of increasing strength, i.e. : rule 2 overrides rule 1, and rule 3 overrides both rule 1 and rule 2. Note that on a concatenated index, you have a generic search if you specify an exact match on only the first set of columns. Example : if your index covers columns C1, C2 and C3, then the query

SELECT ... WHERE C1='x' and C2='y'

is a generic search (because you do not have criteria for C3). This consideration is important for what follows.

If the SAP table is client-dependent, then there will be a unique, concatenated index on the MANDT plus all fields in the primary key. The ABAP statement "SELECT * FROM TABLE" will translate into the query "SELECT * FROM TABLE WHERE MANDT='nnn'" : this means that the query specifies a generic search (MANDT only, not the other key fields) on a concatenated index.

If you add an EXACT search on some other (non-primary key) field to the SELECT (SELECT * FROM TABLE WHERE myfield='XXX'), then this exact search will determine the index that Oracle will use (because rule 3 above is stronger than rule 2). However (and that is where you had a problem), if you add a GENERIC search (SELECT * FROM TABLE WHERE myfield BETWEEN 'XXX' and 'YYY'), then Oracle will use the concatenated index (because rule 3 no longer applies, so rule 2 is used).

To force the use of an index on your generic search, you must therefore do one of the following (I have tried out both, and they work) :

· make the table client-independent

· use the CLIENT SPECIFIED clause in the ABAP select and filter out the unwanted clients programmatically

6.10 Note II: Performance & Load Balancing for Batch Input

6.10.1 Background of SAP BDC programs

Usually SAP BDC programs, such as RFBIBL00, are used to load high volume of data into R/3 database. Several major steps are involved:

· read data from a ASCII file into BDC queue

· the BDC sessions are processed in either foreground or background

1. the corresponding transaction is invoked

2. each screen field in the transaction is then filled from the BDC queue

3. foreign key checking, data validation ... etc are performed in order to maintain data integrity

4. if input data is valid, the database updates are then perform. otherwise, the entry is marked with error and remain in the BDC queue.

6.10.2 Where are the bottlenecks ?

1. One obvious overhead is to read the data files (potentially the are huge) and store the same data in the BDC queue.

2. In step 2 the more screens (and fields) the more overhead it will introduce.

3. Thirdly data validation in step 3 also consume a lot of time.

4. Finally, before the update can occur some dequeue & enqueue must be performed which becomes another bottleneck. For instance it must lock some entries in the number range table before the system can assign next available document number.

6.10.3 What can we do to get around the bottlenecks ?

1. The most effective way to improve the BDC performance is to parallelize these BDCs.

On a normal R/3 application server with one batch process, a performance of 4k - 5k transactions per hour can be expected. With that in mind, if one can divide the input file into 10 smaller files and process the 10 BDC sessions on 10 different application servers. We can gain a performance of 40k - 50k transaction per hour.

2. Consider that reading external UNIX file is faster than reading database table APQD (batch input folders) where additionally status flags and logs are written.

3. To avoid the enqueue/dequeue bottleneck, use external number ranges whenever possible.

4. If using external number ranges is not possible, one should try to avoid using one number range for all document. For instance, create 10 different number ranges for sales document. When loading data on 10 application servers, each uses a distinct number range.

5. To minimize the screen change overhead, one should always use fast-entry screen whenever possible. By doing this, one may gain up to 10% - 15% improvement.

6. Turn off change documents.

7. Turn off match codes (set to asynchronous and create with SAPMACU)

8. On call transaction possibly turn off synchronous update task (enqueue table has to be large enough).

9. Use function modules for database update in batch input

Advantage: even faster than call transaction (FI appr. 4x faster, SD 20% faster)

Currently supported by:

MM documents as 2.2B

FI documents as 3.0 (can sooner be used via projects)

SD order as of 1.1x

SD billing documents as of 1.1x

As of 2.1G you have the possibility to use function modules in batch input (only if programmed this way)

For MM master data loading:

· Release note ‘MM_BD_BTCI_01’ will be useful if customers do not use majority of the fields defined in table BMMH1. Customers may defined only the fields they need in the table ZMMH1 for loading the sequential file. Since each record becomes smaller, the throughput will be better.

· Release note ‘MM_BD_VERWDAT’ indicates that some administrative data and open statuses do NOT have to be created synchronously when the batch input session is processed. Customers can set the "Asynchronous updates" indicator in Customizing for Material Master Data. This will also reduce the overhead and therefore increase the performance of BDC sessions. The administrative data and open statuses can be generated by running the ABAP ‘RMMMVERW’ at the latter time.

· Should one decides to modify standard BDC program ‘RMMMBIM0’ to ‘‘CALL TRANSACTION’, please read the comment at line 2710 before modification.

Warning !

While it is very easy to modify standard SAP BDC programs to use ‘CALL RANSACTION’ instead of BDC, it is very dangerous to do so. Image that system crash during the run of these modified loading programs, there is no way to restart from the point it stop. Unless some special effort has been added to keep track the current document number, customers should never use this approach.

6.11 Note III: ABAP Programming Tips

6.11.1 TIP:
When one uses the MOVE statement,

try keep the destination operands as the same data type as the 'from' operands.

REASON:
Internally the system will need to covert the 'from' operand to the same data type as the destination operand. This causes additional steps to be executed internally.

6.11.2 TIP:
Use the FREE <table> command

once the program has completed using the table. If the program ends on completion of the table processing, this is obviously not required.

REASON:
Each internal table takes up memory space. This memory is finite and cannot be dynamically extended. By freeing the memory used by an internal table other internal tables within the program can use this space and not abend because of the memory constraints.

6.11.3 TIP: When defining DATA statements

only define variable required throughout the program as global (i.e. at the top of the program). If variables are only required for processing within a FORM, then define the variable within the FORM itself.

REASON:
Here again memory is allocated to each variable defined. If the variable is defined globally, then that memory is retained for the duration of the program run-time. If the variable is only defined within the FORM the memory is allocated and used within the FORM only.

Please Note: If a variable is defined within a FORM it is only defined to that FORM and cannot be referenced outside the FORM. Multiple FORMs can use the same variable name without any contention.

6.11.4 TIP:
When using the SORT statement,

always specify the sort key. Try keep the key as short as possible.

REASON:
When a table is sorted the key is loaded into a separate memory area. If the key is not specified the entire row is used as the key. Here again the memory space is finite and if the number of entries * the key is too large the program will swap to disk memory constraints. If a key is specified, only the fields which form part of this key * the number of entries in the table are loaded into memory. This allows for additional table entries to be sorted and makes the sort quicker as the number of fields forming the key are less than the entire row.

6.11.5 TIP:
When processing an internal table use the LOOP

 instead of an SQL select statement. When using the LOOP statement use the LOOP...AT...WHERE instead of a LOOP...AT...CHECK.

REASON:
An SQL select has to first set-up an equivalent to the LOOP statement internally. By using the WHERE clause instead of a CHECK statement within the loop the program does not need to process each table entry, it will just process when the WHERE parameter is met. Always clear the header before looping through an internal table using the WHERE clause.

6.11.6 TIP:
When the LOOP...AT...WHERE

is used ensure the condition variables have been defined with the same data type.

REASON:
Each time a row is read, internally the field(s) which form part of the WHERE clause will have to be converted to the same data type as the condition field.

6.11.7 TIP:
Use the BINARY SEARCH,

when performing an direct read on an internal table. This only becomes beneficial for tables with more than 500 rows.

REASON:
A BINARY SEARCH will break a table into logical units based in the key defined. This will allow the read to jump through the table to find the required entry instead of reading each table entry until the required entry is found.

6.11.8 TIP:
Use a BINARY SEARCH read and MODIFY

instead of COLLECT if the internal table is large (more that 1000 entries)

REASON:
The COLLECT statement will scan through an entire table looking for a like entry and collate the packed fields values. If there is no match the entry will be added to the end. For large tables adding entries to the end or collating like entries could take a long time. By using BINARY SEARCH read the entry will be found without scanning from the beginning of the table and the entry can be manually updated with the MODIFY command. If the entry is not found (SY-SUBRC NE 0) the APPEND command can be used to add the entry to the table. Remember the COLLECT statement only collates packed fields.

6.11.9 TIP:
If one performs many INSERTs or DELETEs

on a large internal table, EXPORT the table to memory and IMPORT back from memory before looping through the table.

REASON: When one performs either an INSERT or a DELETE, the physical structure does not change and an index table is created. This table contains the pointer to the address in the internal table created by the ABAP program. If one INSERTs a record, physically the entry is placed at the end of the table, but the pointer to that record is inserted into the index table in the correct position. When a row is DELETED, physically the entry remains in the internal table, but the address is removed from the index table. When one loops through the internal table after DELETEs or INSERTs, ABAP will loop sequentially through the index table and perform direct reads on the internal table. By performing an EXPORT and then an IMPORT the internal table is loaded into memory and reloaded in the correct sequence and the index table is deleted. This way, when one loops through an internal table, there is no intermediary index table and the loop is performed directly on the internal table.

6.11.10 TIP:
Use the CASE statement instead of a nested IF.

REASON:
It is far quicker to read down through a CASE statement that to check the conditions for each IF statement within a nested IF.

6.11.11 TIP:
Always place the mot likely condition first,

when using the IF or CASE statement. When using IF...OR have the most common success condition first. If using IF...AND then specify the most frequent knock-out criterion first.

REASON:
If the most likely condition is not placed first then the program always has to test the unlikely condition(s) before reaching the most likely one(s). More complex logical expressions are valuated from left to right.

Please note that for tips 11 & 12 one must note the special features of type conversion as mentioned in tip 1. The operands to be compared should always be of the same data type, as it will otherwise be necessary to convert them first.

6.11.12 Comparison different modularization techniques.

6.11.12.1 Internal subroutine

e.g. FORM

Part of the main program. There are no additional memory requirements.

Cost/Run-time: Factor 1 (Note: This is the base factor for the techniques to follow)

6.11.12.2 External subroutines

e.g. PERFORM <sub-routine>(program-name) using ...

Internally the program is loaded to form part of the main program. The call to the external subroutine may require the program of the external subroutine to be generated.

Cost/Run-time: Factor 6

6.11.12.3 Function modules

e.g. CALL FUNCTION

Internally the complete function group is loaded to form part of the main program. The complete function group will be generated with the first CALL FUNCTION.

Cost/Run-time: Factor 12.

6.11.12.4 Dynpros

e.g. CALL SCREEN

For each CALL SCREEN command the entire dynpro needs to loaded into memory.

Cost/Run-time: Factor 148

6.11.12.5 Dialog Modules

e.g. Dynpros and the related ABAP module pool

A new internal session is opened by the system when one calls a dialog module. A dialog module consists of a module pool and the screens allocated to it. In the case of dialog modules, data is almost always passed. This may require considerable CPU time if internal tables need to be passed to the new internal session created by the system.

Cost/Run-time: Factor: 13000

6.11.12.6 Transactions

e.g. CALL TRANSACTION

When one calls a transaction, the system opens a new internal session or replaces the current session with a new session (depends in syntax used). A module pool with dynpros is allocated to a transaction. Transactions are called in a different way from dialog modules.

Cost/Run-time: Factor 8000

6.11.12.7 Reports

e.g. SUBMIT <report-name> ...

When you start a report with the SUBMIT statement, the system opens a new internal session or replaces the current session with a new session (depends on syntax used). Internal tables can be passed to the submitted program.

Cost/Run-time: Factor 10000

6.11.12.8 List processing

e.g. LEAVE TO LIST PROCESSING

One can create limited display functions within a transaction in the module pool itself rather than starting a further ABAP program with SUBMIT.

Cost/Run-time: Factor 2

From the above one should avoid calling dialog modules at all times. When calling transactions or submitting reports try avoid the RETURN option. Avoid multiple or nested calls or submits within the same program.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image6.wmf]
[image: image7.wmf]
Page 55 of 55

[image: image8.wmf][image: image9.wmf][image: image10.wmf][image: image11.wmf][image: image12.wmf][image: image13.wmf][image: image14.wmf][image: image15.wmf][image: image16.wmf][image: image17.wmf][image: image18.wmf][image: image19.wmf][image: image20.wmf][image: image21.wmf][image: image22.wmf][image: image23.wmf][image: image24.wmf][image: image25.wmf][image: image26.wmf][image: image27.wmf][image: image28.wmf][image: image29.wmf][image: image30.wmf][image: image31.wmf][image: image32.wmf][image: image33.wmf][image: image34.wmf][image: image35.wmf][image: image36.wmf]

[image: image37.wmf][image: image38.wmf][image: image39.wmf][image: image40.wmf][image: image41.wmf][image: image42.wmf][image: image43.wmf][image: image44.wmf][image: image45.wmf][image: image46.wmf][image: image47.wmf][image: image48.wmf][image: image49.wmf][image: image50.wmf][image: image51.wmf][image: image52.wmf][image: image53.wmf][image: image54.wmf][image: image55.wmf][image: image56.wmf][image: image57.wmf][image: image58.wmf][image: image59.wmf][image: image60.wmf][image: image61.wmf][image: image62.wmf][image: image63.wmf][image: image64.wmf][image: image65.wmf][image: image66.wmf][image: image67.wmf][image: image68.wmf]

[image: image69.png][image: image70.png][image: image71.png][image: image72.wmf]

[image: image73.wmf]

_917880716.doc
�

�

_1051085389.doc
[image: image1.wmf]

_1051085545.doc
[image: image1.wmf]

_1051085682.doc
[image: image1.png]

_1032084696.doc
[image: image1.wmf]

_1033535779.doc
[image: image1.png]

_917880715.doc
�

		� DATE \l �22.06.1994�

SAP Documentation Development		Page � PAGE �1�

